bbgo/pkg/optimizer/hpoptimizer.go

304 lines
9.6 KiB
Go
Raw Normal View History

package optimizer
import (
"context"
"fmt"
"math"
"sync"
"git.qtrade.icu/lychiyu/bbgo/pkg/fixedpoint"
"github.com/c-bata/goptuna"
goptunaCMAES "github.com/c-bata/goptuna/cmaes"
goptunaSOBOL "github.com/c-bata/goptuna/sobol"
goptunaTPE "github.com/c-bata/goptuna/tpe"
"github.com/cheggaaa/pb/v3"
"github.com/sirupsen/logrus"
"golang.org/x/sync/errgroup"
)
// WARNING: the text here could only be lower cases
const (
// HpOptimizerObjectiveEquity optimize the parameters to maximize equity gain
HpOptimizerObjectiveEquity = "equity"
// HpOptimizerObjectiveProfit optimize the parameters to maximize trading profit
HpOptimizerObjectiveProfit = "profit"
// HpOptimizerObjectiveVolume optimize the parameters to maximize trading volume
HpOptimizerObjectiveVolume = "volume"
// HpOptimizerObjectiveProfitFactor optimize the parameters to maximize profit factor
HpOptimizerObjectiveProfitFactor = "profitfactor"
)
const (
// HpOptimizerAlgorithmTPE is the implementation of Tree-structured Parzen Estimators
HpOptimizerAlgorithmTPE = "tpe"
// HpOptimizerAlgorithmCMAES is the implementation Covariance Matrix Adaptation Evolution Strategy
HpOptimizerAlgorithmCMAES = "cmaes"
// HpOptimizerAlgorithmSOBOL is the implementation Quasi-monte carlo sampling based on Sobol sequence
HpOptimizerAlgorithmSOBOL = "sobol"
// HpOptimizerAlgorithmRandom is the implementation random search
HpOptimizerAlgorithmRandom = "random"
)
type HyperparameterOptimizeTrialResult struct {
Value fixedpoint.Value `json:"value"`
Parameters map[string]interface{} `json:"parameters"`
ID *int `json:"id,omitempty"`
State string `json:"state,omitempty"`
}
type HyperparameterOptimizeReport struct {
Name string `json:"studyName"`
Objective string `json:"objective"`
Parameters map[string]string `json:"domains"`
Best *HyperparameterOptimizeTrialResult `json:"best"`
Trials []*HyperparameterOptimizeTrialResult `json:"trials,omitempty"`
}
func buildBestHyperparameterOptimizeResult(study *goptuna.Study) *HyperparameterOptimizeTrialResult {
val, _ := study.GetBestValue()
params, _ := study.GetBestParams()
return &HyperparameterOptimizeTrialResult{
Value: fixedpoint.NewFromFloat(val),
Parameters: params,
}
}
func buildHyperparameterOptimizeTrialResults(study *goptuna.Study) []*HyperparameterOptimizeTrialResult {
trials, _ := study.GetTrials()
results := make([]*HyperparameterOptimizeTrialResult, len(trials))
for i, trial := range trials {
trialId := trial.ID
trialResult := &HyperparameterOptimizeTrialResult{
ID: &trialId,
Value: fixedpoint.NewFromFloat(trial.Value),
Parameters: trial.Params,
}
results[i] = trialResult
}
return results
}
type HyperparameterOptimizer struct {
SessionName string
Config *Config
// Workaround for goptuna/tpe parameter suggestion. Remove this after fixed.
// ref: https://github.com/c-bata/goptuna/issues/236
paramSuggestionLock sync.Mutex
}
func (o *HyperparameterOptimizer) buildStudy(trialFinishChan chan goptuna.FrozenTrial) (*goptuna.Study, error) {
var studyOpts = make([]goptuna.StudyOption, 0, 2)
// maximum the profit, volume, equity gain, ...etc
studyOpts = append(studyOpts, goptuna.StudyOptionDirection(goptuna.StudyDirectionMaximize))
// disable search log and collect trial progress
studyOpts = append(studyOpts, goptuna.StudyOptionLogger(nil))
studyOpts = append(studyOpts, goptuna.StudyOptionTrialNotifyChannel(trialFinishChan))
// the search algorithm
var sampler goptuna.Sampler = nil
var relativeSampler goptuna.RelativeSampler = nil
switch o.Config.Algorithm {
case HpOptimizerAlgorithmRandom:
sampler = goptuna.NewRandomSampler()
case HpOptimizerAlgorithmTPE:
sampler = goptunaTPE.NewSampler()
case HpOptimizerAlgorithmCMAES:
relativeSampler = goptunaCMAES.NewSampler(goptunaCMAES.SamplerOptionNStartupTrials(5))
case HpOptimizerAlgorithmSOBOL:
relativeSampler = goptunaSOBOL.NewSampler()
}
if sampler != nil {
studyOpts = append(studyOpts, goptuna.StudyOptionSampler(sampler))
} else {
studyOpts = append(studyOpts, goptuna.StudyOptionRelativeSampler(relativeSampler))
}
return goptuna.CreateStudy(o.SessionName, studyOpts...)
}
func (o *HyperparameterOptimizer) buildParamDomains() (map[string]string, []paramDomain) {
labelPaths := make(map[string]string)
domains := make([]paramDomain, 0, len(o.Config.Matrix))
for _, selector := range o.Config.Matrix {
var domain paramDomain
switch selector.Type {
case selectorTypeRange, selectorTypeRangeFloat:
if selector.Step.IsZero() {
domain = &floatRangeDomain{
paramDomainBase: paramDomainBase{
label: selector.Label,
path: selector.Path,
},
min: selector.Min.Float64(),
max: selector.Max.Float64(),
}
} else {
domain = &floatDiscreteRangeDomain{
paramDomainBase: paramDomainBase{
label: selector.Label,
path: selector.Path,
},
min: selector.Min.Float64(),
max: selector.Max.Float64(),
step: selector.Step.Float64(),
}
}
case selectorTypeRangeInt:
if selector.Step.IsZero() {
domain = &intRangeDomain{
paramDomainBase: paramDomainBase{
label: selector.Label,
path: selector.Path,
},
min: selector.Min.Int(),
max: selector.Max.Int(),
}
} else {
domain = &intStepRangeDomain{
paramDomainBase: paramDomainBase{
label: selector.Label,
path: selector.Path,
},
min: selector.Min.Int(),
max: selector.Max.Int(),
step: selector.Step.Int(),
}
}
case selectorTypeIterate, selectorTypeString:
domain = &stringDomain{
paramDomainBase: paramDomainBase{
label: selector.Label,
path: selector.Path,
},
options: selector.Values,
}
case selectorTypeBool:
domain = &boolDomain{
paramDomainBase: paramDomainBase{
label: selector.Label,
path: selector.Path,
},
}
default:
// unknown parameter type, skip
continue
}
labelPaths[selector.Label] = selector.Path
domains = append(domains, domain)
}
return labelPaths, domains
}
func (o *HyperparameterOptimizer) buildObjective(executor Executor, configJson []byte, paramDomains []paramDomain) goptuna.FuncObjective {
var metricValueFunc MetricValueFunc
switch o.Config.Objective {
case HpOptimizerObjectiveProfit:
metricValueFunc = TotalProfitMetricValueFunc
case HpOptimizerObjectiveVolume:
metricValueFunc = TotalVolume
case HpOptimizerObjectiveEquity:
metricValueFunc = TotalEquityDiff
case HpOptimizerObjectiveProfitFactor:
metricValueFunc = ProfitFactorMetricValueFunc
}
return func(trial goptuna.Trial) (float64, error) {
trialConfig, err := func(trialConfig []byte) ([]byte, error) {
o.paramSuggestionLock.Lock()
defer o.paramSuggestionLock.Unlock()
for _, domain := range paramDomains {
if patch, err := domain.buildPatch(&trial); err != nil {
return nil, err
} else if patchedConfig, err := patch.ApplyIndent(trialConfig, " "); err != nil {
return nil, err
} else {
trialConfig = patchedConfig
}
}
return trialConfig, nil
}(configJson)
if err != nil {
return 0.0, err
}
summary, err := executor.Execute(trialConfig)
if err != nil {
return 0.0, err
}
// By config, the Goptuna optimize the parameters by maximize the objective output.
return metricValueFunc(summary), nil
}
}
func (o *HyperparameterOptimizer) Run(ctx context.Context, executor Executor, configJson []byte) (*HyperparameterOptimizeReport, error) {
labelPaths, paramDomains := o.buildParamDomains()
objective := o.buildObjective(executor, configJson, paramDomains)
maxEvaluation := o.Config.MaxEvaluation
numOfProcesses := o.Config.Executor.LocalExecutorConfig.MaxNumberOfProcesses
if numOfProcesses > maxEvaluation {
numOfProcesses = maxEvaluation
}
maxEvaluationPerProcess := maxEvaluation / numOfProcesses
if maxEvaluation%numOfProcesses > 0 {
maxEvaluationPerProcess++
}
trialFinishChan := make(chan goptuna.FrozenTrial, 128)
allTrailFinishChan := make(chan struct{})
bar := pb.Full.Start(maxEvaluation)
bar.SetTemplateString(`{{ string . "log" | green}} | {{counters . }} {{bar . }} {{percent . }} {{etime . }} {{rtime . "ETA %s"}}`)
go func() {
defer close(allTrailFinishChan)
var bestVal = math.Inf(-1)
for result := range trialFinishChan {
log.WithFields(logrus.Fields{"ID": result.ID, "evaluation": result.Value, "state": result.State}).Debug("trial finished")
if result.State == goptuna.TrialStateFail {
log.WithFields(result.Params).Errorf("failed at trial #%d", result.ID)
}
if result.Value > bestVal {
bestVal = result.Value
}
bar.Set("log", fmt.Sprintf("best value: %v", bestVal))
bar.Increment()
}
}()
study, err := o.buildStudy(trialFinishChan)
if err != nil {
return nil, err
}
eg, studyCtx := errgroup.WithContext(ctx)
study.WithContext(studyCtx)
for i := 0; i < numOfProcesses; i++ {
processEvaluations := maxEvaluationPerProcess
if processEvaluations > maxEvaluation {
processEvaluations = maxEvaluation
}
eg.Go(func() error {
return study.Optimize(objective, processEvaluations)
})
maxEvaluation -= processEvaluations
}
if err := eg.Wait(); err != nil && ctx.Err() != context.Canceled {
return nil, err
}
close(trialFinishChan)
<-allTrailFinishChan
bar.Finish()
return &HyperparameterOptimizeReport{
Name: o.SessionName,
Objective: o.Config.Objective,
Parameters: labelPaths,
Best: buildBestHyperparameterOptimizeResult(study),
Trials: buildHyperparameterOptimizeTrialResults(study),
}, nil
}