bbgo_origin/pkg/bbgo/scale_test.go

202 lines
4.8 KiB
Go
Raw Permalink Normal View History

2021-02-27 17:53:00 +00:00
package bbgo
import (
"testing"
"github.com/stretchr/testify/assert"
)
const Delta = 1e-9
func TestExponentialScale(t *testing.T) {
2021-02-27 17:53:00 +00:00
// graph see: https://www.desmos.com/calculator/ip0ijbcbbf
scale := ExponentialScale{
2021-02-27 17:53:00 +00:00
Domain: [2]float64{1000, 2000},
Range: [2]float64{0.001, 0.01},
}
err := scale.Solve()
assert.NoError(t, err)
assert.Equal(t, "f(x) = 0.001000 * 1.002305 ^ (x - 1000.000000)", scale.String())
assert.InDelta(t, 0.001, scale.Call(1000.0), Delta)
assert.InDelta(t, 0.01, scale.Call(2000.0), Delta)
2021-02-27 17:53:00 +00:00
for x := 1000; x <= 2000; x += 100 {
y := scale.Call(float64(x))
t.Logf("%s = %f", scale.FormulaOf(float64(x)), y)
}
}
func TestExponentialScale_Reverse(t *testing.T) {
scale := ExponentialScale{
Domain: [2]float64{1000, 2000},
Range: [2]float64{0.1, 0.001},
}
err := scale.Solve()
assert.NoError(t, err)
assert.Equal(t, "f(x) = 0.100000 * 0.995405 ^ (x - 1000.000000)", scale.String())
assert.InDelta(t, 0.1, scale.Call(1000.0), Delta)
assert.InDelta(t, 0.001, scale.Call(2000.0), Delta)
for x := 1000; x <= 2000; x += 100 {
y := scale.Call(float64(x))
t.Logf("%s = %f", scale.FormulaOf(float64(x)), y)
}
}
2021-02-27 17:53:00 +00:00
func TestLogScale(t *testing.T) {
2021-02-27 17:55:35 +00:00
// see https://www.desmos.com/calculator/q1ufxx5gry
scale := LogarithmicScale{
2021-02-27 17:53:00 +00:00
Domain: [2]float64{1000, 2000},
Range: [2]float64{0.001, 0.01},
}
err := scale.Solve()
assert.NoError(t, err)
assert.Equal(t, "f(x) = 0.001303 * log(x - 999.000000) + 0.001000", scale.String())
assert.InDelta(t, 0.001, scale.Call(1000.0), Delta)
assert.InDelta(t, 0.01, scale.Call(2000.0), Delta)
2021-02-27 17:53:00 +00:00
for x := 1000; x <= 2000; x += 100 {
y := scale.Call(float64(x))
t.Logf("%s = %f", scale.FormulaOf(float64(x)), y)
}
}
2021-02-27 18:06:33 +00:00
2021-02-27 18:20:47 +00:00
func TestLinearScale(t *testing.T) {
scale := LinearScale{
Domain: [2]float64{1000, 2000},
Range: [2]float64{3, 10},
}
err := scale.Solve()
assert.NoError(t, err)
assert.Equal(t, "f(x) = 0.007000 * x + -4.000000", scale.String())
assert.InDelta(t, 3, scale.Call(1000), Delta)
assert.InDelta(t, 10, scale.Call(2000), Delta)
2021-02-27 18:20:47 +00:00
for x := 1000; x <= 2000; x += 100 {
y := scale.Call(float64(x))
t.Logf("%s = %f", scale.FormulaOf(float64(x)), y)
}
}
2021-05-09 18:52:41 +00:00
func TestLinearScale2(t *testing.T) {
scale := LinearScale{
Domain: [2]float64{1, 3},
Range: [2]float64{0.1, 0.4},
}
err := scale.Solve()
assert.NoError(t, err)
assert.Equal(t, "f(x) = 0.150000 * x + -0.050000", scale.String())
assert.InDelta(t, 0.1, scale.Call(1), Delta)
assert.InDelta(t, 0.4, scale.Call(3), Delta)
2021-05-09 18:52:41 +00:00
}
2021-02-27 18:06:33 +00:00
func TestQuadraticScale(t *testing.T) {
2021-02-27 18:07:48 +00:00
// see https://www.desmos.com/calculator/vfqntrxzpr
2021-02-27 18:06:33 +00:00
scale := QuadraticScale{
Domain: [3]float64{0, 100, 200},
Range: [3]float64{1, 20, 50},
}
err := scale.Solve()
assert.NoError(t, err)
assert.Equal(t, "f(x) = 0.000550 * x ^ 2 + 0.135000 * x + 1.000000", scale.String())
assert.InDelta(t, 1, scale.Call(0), Delta)
assert.InDelta(t, 20, scale.Call(100.0), Delta)
assert.InDelta(t, 50.0, scale.Call(200.0), Delta)
2021-02-27 18:06:33 +00:00
for x := 0; x <= 200; x += 1 {
y := scale.Call(float64(x))
t.Logf("%s = %f", scale.FormulaOf(float64(x)), y)
}
}
2022-01-26 17:40:54 +00:00
func TestPercentageScale(t *testing.T) {
t.Run("from 0.0 to 1.0", func(t *testing.T) {
s := &PercentageScale{
ByPercentage: &SlideRule{
ExpScale: &ExponentialScale{
Domain: [2]float64{0.0, 1.0},
Range: [2]float64{1.0, 100.0},
},
},
}
v, err := s.Scale(0.0)
assert.NoError(t, err)
assert.InDelta(t, 1.0, v, Delta)
2022-01-26 17:40:54 +00:00
v, err = s.Scale(1.0)
assert.NoError(t, err)
assert.InDelta(t, 100.0, v, Delta)
2022-01-26 17:40:54 +00:00
})
t.Run("from -1.0 to 1.0", func(t *testing.T) {
s := &PercentageScale{
ByPercentage: &SlideRule{
ExpScale: &ExponentialScale{
Domain: [2]float64{-1.0, 1.0},
Range: [2]float64{10.0, 100.0},
},
},
}
v, err := s.Scale(-1.0)
assert.NoError(t, err)
assert.InDelta(t, 10.0, v, Delta)
2022-01-26 17:40:54 +00:00
v, err = s.Scale(1.0)
assert.NoError(t, err)
assert.InDelta(t, 100.0, v, Delta)
2022-01-26 17:40:54 +00:00
})
2022-01-26 18:32:26 +00:00
t.Run("reverse -1.0 to 1.0", func(t *testing.T) {
s := &PercentageScale{
ByPercentage: &SlideRule{
ExpScale: &ExponentialScale{
Domain: [2]float64{-1.0, 1.0},
Range: [2]float64{100.0, 10.0},
},
},
}
v, err := s.Scale(-1.0)
assert.NoError(t, err)
assert.InDelta(t, 100.0, v, Delta)
2022-01-26 18:32:26 +00:00
v, err = s.Scale(1.0)
assert.NoError(t, err)
assert.InDelta(t, 10.0, v, Delta)
2022-01-26 18:39:33 +00:00
v, err = s.Scale(2.0)
assert.NoError(t, err)
assert.InDelta(t, 10.0, v, Delta)
2022-01-26 18:39:33 +00:00
v, err = s.Scale(-2.0)
assert.NoError(t, err)
assert.InDelta(t, 100.0, v, Delta)
2022-01-26 18:32:26 +00:00
})
t.Run("negative range", func(t *testing.T) {
s := &PercentageScale{
ByPercentage: &SlideRule{
ExpScale: &ExponentialScale{
Domain: [2]float64{0.0, 1.0},
Range: [2]float64{-100.0, 100.0},
},
},
}
v, err := s.Scale(0.0)
assert.NoError(t, err)
assert.InDelta(t, -100.0, v, Delta)
v, err = s.Scale(1.0)
assert.NoError(t, err)
assert.InDelta(t, 100.0, v, Delta)
})
2022-01-26 17:40:54 +00:00
}