mirror of
https://github.com/c9s/bbgo.git
synced 2024-11-10 09:11:55 +00:00
strategy:harmonic: fix
This commit is contained in:
parent
c8aa4ae400
commit
7d03c69406
|
@ -13,7 +13,6 @@ import (
|
|||
"github.com/c9s/bbgo/pkg/indicator"
|
||||
"github.com/c9s/bbgo/pkg/types"
|
||||
"github.com/sirupsen/logrus"
|
||||
floats2 "gonum.org/v1/gonum/floats"
|
||||
)
|
||||
|
||||
const ID = "harmonic"
|
||||
|
@ -342,9 +341,9 @@ func (s *Strategy) Run(ctx context.Context, orderExecutor bbgo.OrderExecutor, se
|
|||
states.Update(0)
|
||||
s.session.MarketDataStream.OnKLineClosed(types.KLineWith(s.Symbol, s.Interval, func(kline types.KLine) {
|
||||
|
||||
log.Infof("Shark Score: %f, Current Price: %f", s.shark.Last(), kline.Close.Float64())
|
||||
log.Infof("shark score: %f, current price: %f", s.shark.Last(), kline.Close.Float64())
|
||||
|
||||
nextState := alpha(s.shark.Array(s.Window), states.Array(s.Window), s.Window)
|
||||
nextState := hmm(s.shark.Array(s.Window), states.Array(s.Window), s.Window)
|
||||
states.Update(nextState)
|
||||
log.Infof("Denoised signal via HMM: %f", states.Last())
|
||||
|
||||
|
@ -367,7 +366,7 @@ func (s *Strategy) Run(ctx context.Context, orderExecutor bbgo.OrderExecutor, se
|
|||
Side: types.SideTypeBuy,
|
||||
Quantity: s.Quantity,
|
||||
Type: types.OrderTypeMarket,
|
||||
Tag: "shark long",
|
||||
Tag: "sharkLong",
|
||||
})
|
||||
} else if states.Mean(5) == -1 && direction != -1 {
|
||||
_, _ = s.orderExecutor.SubmitOrders(ctx, types.SubmitOrder{
|
||||
|
@ -375,7 +374,7 @@ func (s *Strategy) Run(ctx context.Context, orderExecutor bbgo.OrderExecutor, se
|
|||
Side: types.SideTypeSell,
|
||||
Quantity: s.Quantity,
|
||||
Type: types.OrderTypeMarket,
|
||||
Tag: "shark short",
|
||||
Tag: "sharkShort",
|
||||
})
|
||||
}
|
||||
}))
|
||||
|
@ -402,7 +401,7 @@ func (s *Strategy) Run(ctx context.Context, orderExecutor bbgo.OrderExecutor, se
|
|||
}
|
||||
|
||||
// TODO: dirichlet distribution is a too naive solution
|
||||
func observationDistribution(y_t, x_t float64) float64 {
|
||||
func observeDistribution(y_t, x_t float64) float64 {
|
||||
if x_t == 0. && y_t == 0 {
|
||||
// observed zero value from indicator when in neutral state
|
||||
return 1.
|
||||
|
@ -417,7 +416,7 @@ func observationDistribution(y_t, x_t float64) float64 {
|
|||
}
|
||||
}
|
||||
|
||||
func transitionProbability(x_t0, x_t1 int) float64 {
|
||||
func transitProbability(x_t0, x_t1 int) float64 {
|
||||
// stick to the same sate
|
||||
if x_t0 == x_t1 {
|
||||
return 0.99
|
||||
|
@ -426,7 +425,21 @@ func transitionProbability(x_t0, x_t1 int) float64 {
|
|||
return 1 - 0.99
|
||||
}
|
||||
|
||||
func alpha(y_t []float64, x_t []float64, l int) float64 {
|
||||
// HMM main function, ref: https://tr8dr.github.io/HMMFiltering/
|
||||
/*
|
||||
# initialize time step 0 using state priors and observation dist p(y | x = s)
|
||||
for si in states:
|
||||
alpha[t = 0, state = si] = pi[si] * p(y[0] | x = si)
|
||||
|
||||
# determine alpha for t = 1 .. n
|
||||
for t in 1 .. n:
|
||||
for sj in states:
|
||||
alpha[t,sj] = max([alpha[t-1,si] * M[si,sj] for si in states]) * p(y[t] | x = sj)
|
||||
|
||||
# determine current state at time t
|
||||
return argmax(alpha[t,si] over si)
|
||||
*/
|
||||
func hmm(y_t []float64, x_t []float64, l int) float64 {
|
||||
al := make([]float64, l)
|
||||
an := make([]float64, l)
|
||||
as := make([]float64, l)
|
||||
|
@ -440,26 +453,29 @@ func alpha(y_t []float64, x_t []float64, l int) float64 {
|
|||
sin := make([]float64, 3)
|
||||
sis := make([]float64, 3)
|
||||
for i := -1; i <= 1; i++ {
|
||||
sil = append(sil, x_t[n-1-1]*transitionProbability(i, j))
|
||||
sin = append(sin, x_t[n-1-1]*transitionProbability(i, j))
|
||||
sis = append(sis, x_t[n-1-1]*transitionProbability(i, j))
|
||||
sil = append(sil, x_t[n-1-1]*transitProbability(i, j))
|
||||
sin = append(sin, x_t[n-1-1]*transitProbability(i, j))
|
||||
sis = append(sis, x_t[n-1-1]*transitProbability(i, j))
|
||||
}
|
||||
if j > 0 {
|
||||
long = floats2.Max(sil) * observationDistribution(y_t[n-1], float64(j))
|
||||
_, longArr := floats.MinMax(sil, 3)
|
||||
long = longArr[0] * observeDistribution(y_t[n-1], float64(j))
|
||||
al = append(al, long)
|
||||
} else if j == 0 {
|
||||
neut = floats2.Max(sin) * observationDistribution(y_t[n-1], float64(j))
|
||||
_, neutArr := floats.MinMax(sin, 3)
|
||||
neut = neutArr[0] * observeDistribution(y_t[n-1], float64(j))
|
||||
an = append(an, neut)
|
||||
} else if j < 0 {
|
||||
short = floats2.Max(sis) * observationDistribution(y_t[n-1], float64(j))
|
||||
_, shortArr := floats.MinMax(sis, 3)
|
||||
short = shortArr[0] * observeDistribution(y_t[n-1], float64(j))
|
||||
as = append(as, short)
|
||||
}
|
||||
}
|
||||
}
|
||||
maximum := floats2.Max([]float64{long, neut, short})
|
||||
if maximum == long {
|
||||
_, maximum := floats.MinMax([]float64{long, neut, short}, 3)
|
||||
if maximum[0] == long {
|
||||
return 1
|
||||
} else if maximum == short {
|
||||
} else if maximum[0] == short {
|
||||
return -1
|
||||
}
|
||||
return 0
|
||||
|
|
Loading…
Reference in New Issue
Block a user