mirror of
https://github.com/c9s/bbgo.git
synced 2024-11-21 22:43:52 +00:00
rewrite cci indicator in v2 indicator
This commit is contained in:
parent
4648b5434e
commit
ce481ba52d
|
@ -11,6 +11,12 @@ import (
|
|||
// Refer URL: http://www.andrewshamlet.net/2017/07/08/python-tutorial-cci
|
||||
// with modification of ddof=0 to let standard deviation to be divided by N instead of N-1
|
||||
//
|
||||
// CCI = (Typical Price - n-period SMA of TP) / (Constant x Mean Deviation)
|
||||
//
|
||||
// Typical Price (TP) = (High + Low + Close)/3
|
||||
//
|
||||
// Constant = .015
|
||||
//
|
||||
// The Commodity Channel Index (CCI) is a technical analysis indicator that is used to identify potential overbought or oversold conditions
|
||||
// in a security's price. It was originally developed for use in commodity markets, but can be applied to any security that has a sufficient
|
||||
// amount of price data. The CCI is calculated by taking the difference between the security's typical price (the average of its high, low, and
|
||||
|
@ -43,16 +49,18 @@ func (inc *CCI) Update(value float64) {
|
|||
}
|
||||
|
||||
inc.Input.Push(value)
|
||||
tp := inc.TypicalPrice.Last(0) - inc.Input.Index(inc.Window) + value
|
||||
tp := inc.TypicalPrice.Last(0) - inc.Input.Last(inc.Window) + value
|
||||
inc.TypicalPrice.Push(tp)
|
||||
if len(inc.Input) < inc.Window {
|
||||
return
|
||||
}
|
||||
|
||||
ma := tp / float64(inc.Window)
|
||||
inc.MA.Push(ma)
|
||||
if len(inc.MA) > MaxNumOfEWMA {
|
||||
inc.MA = inc.MA[MaxNumOfEWMATruncateSize-1:]
|
||||
}
|
||||
|
||||
md := 0.
|
||||
for i := 0; i < inc.Window; i++ {
|
||||
diff := inc.Input.Last(i) - ma
|
||||
|
|
|
@ -4,8 +4,9 @@ import (
|
|||
"encoding/json"
|
||||
"testing"
|
||||
|
||||
"github.com/c9s/bbgo/pkg/types"
|
||||
"github.com/stretchr/testify/assert"
|
||||
|
||||
"github.com/c9s/bbgo/pkg/types"
|
||||
)
|
||||
|
||||
/*
|
||||
|
@ -19,7 +20,7 @@ print(cci)
|
|||
func Test_CCI(t *testing.T) {
|
||||
var randomPrices = []byte(`[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]`)
|
||||
var input []float64
|
||||
var Delta = 4.3e-2
|
||||
var delta = 4.3e-2
|
||||
if err := json.Unmarshal(randomPrices, &input); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
@ -30,8 +31,8 @@ func Test_CCI(t *testing.T) {
|
|||
}
|
||||
|
||||
last := cci.Last(0)
|
||||
assert.InDelta(t, 93.250481, last, Delta)
|
||||
assert.InDelta(t, 81.813449, cci.Index(1), Delta)
|
||||
assert.InDelta(t, 93.250481, last, delta)
|
||||
assert.InDelta(t, 81.813449, cci.Index(1), delta)
|
||||
assert.Equal(t, 50-16+1, cci.Length())
|
||||
})
|
||||
}
|
||||
|
|
65
pkg/indicator/v2/cci.go
Normal file
65
pkg/indicator/v2/cci.go
Normal file
|
@ -0,0 +1,65 @@
|
|||
package indicatorv2
|
||||
|
||||
import (
|
||||
"math"
|
||||
|
||||
"github.com/c9s/bbgo/pkg/types"
|
||||
)
|
||||
|
||||
// Refer: Commodity Channel Index
|
||||
// Refer URL: http://www.andrewshamlet.net/2017/07/08/python-tutorial-cci
|
||||
// with modification of ddof=0 to let standard deviation to be divided by N instead of N-1
|
||||
//
|
||||
// CCI = (Typical Price - n-period SMA of TP) / (Constant x Mean Deviation)
|
||||
//
|
||||
// Typical Price (TP) = (High + Low + Close)/3
|
||||
//
|
||||
// Constant = .015
|
||||
//
|
||||
// The Commodity Channel Index (CCI) is a technical analysis indicator that is used to identify potential overbought or oversold conditions
|
||||
// in a security's price. It was originally developed for use in commodity markets, but can be applied to any security that has a sufficient
|
||||
// amount of price data. The CCI is calculated by taking the difference between the security's typical price (the average of its high, low, and
|
||||
// closing prices) and its moving average, and then dividing the result by the mean absolute deviation of the typical price. This resulting value
|
||||
// is then plotted as a line on the price chart, with values above +100 indicating overbought conditions and values below -100 indicating
|
||||
// oversold conditions. The CCI can be used by traders to identify potential entry and exit points for trades, or to confirm other technical
|
||||
// analysis signals.
|
||||
|
||||
type CCIStream struct {
|
||||
*types.Float64Series
|
||||
|
||||
TypicalPrice *types.Float64Series
|
||||
|
||||
source types.Float64Source
|
||||
window int
|
||||
}
|
||||
|
||||
func CCI(source types.Float64Source, window int) *CCIStream {
|
||||
s := &CCIStream{
|
||||
Float64Series: types.NewFloat64Series(),
|
||||
TypicalPrice: types.NewFloat64Series(),
|
||||
source: source,
|
||||
window: window,
|
||||
}
|
||||
s.Bind(source, s)
|
||||
return s
|
||||
}
|
||||
|
||||
func (s *CCIStream) Calculate(value float64) float64 {
|
||||
var tp = value
|
||||
if s.TypicalPrice.Length() > 0 {
|
||||
tp = s.TypicalPrice.Last(0) - s.source.Last(s.window) + value
|
||||
}
|
||||
|
||||
s.TypicalPrice.Push(tp)
|
||||
|
||||
ma := tp / float64(s.window)
|
||||
md := 0.
|
||||
for i := 0; i < s.window; i++ {
|
||||
diff := s.source.Last(i) - ma
|
||||
md += diff * diff
|
||||
}
|
||||
|
||||
md = math.Sqrt(md / float64(s.window))
|
||||
cci := (value - ma) / (0.015 * md)
|
||||
return cci
|
||||
}
|
39
pkg/indicator/v2/cci_test.go
Normal file
39
pkg/indicator/v2/cci_test.go
Normal file
|
@ -0,0 +1,39 @@
|
|||
package indicatorv2
|
||||
|
||||
import (
|
||||
"encoding/json"
|
||||
"testing"
|
||||
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
/*
|
||||
python:
|
||||
|
||||
import pandas as pd
|
||||
s = pd.Series([0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9])
|
||||
cci = pd.Series((s - s.rolling(16).mean()) / (0.015 * s.rolling(16).std(ddof=0)), name="CCI")
|
||||
print(cci)
|
||||
*/
|
||||
func Test_CCI(t *testing.T) {
|
||||
var randomPrices = []byte(`[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]`)
|
||||
var input []float64
|
||||
var delta = 4.3e-2
|
||||
if err := json.Unmarshal(randomPrices, &input); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
t.Run("random_case", func(t *testing.T) {
|
||||
price := Price(nil, nil)
|
||||
cci := CCI(price, 16)
|
||||
for _, value := range input {
|
||||
price.PushAndEmit(value)
|
||||
}
|
||||
|
||||
t.Logf("cci: %+v", cci.Slice)
|
||||
|
||||
last := cci.Last(0)
|
||||
assert.InDelta(t, 93.250481, last, delta)
|
||||
assert.InDelta(t, 81.813449, cci.Index(1), delta)
|
||||
assert.Equal(t, 50, cci.Length(), "length")
|
||||
})
|
||||
}
|
5
pkg/indicator/v2/const.go
Normal file
5
pkg/indicator/v2/const.go
Normal file
|
@ -0,0 +1,5 @@
|
|||
package indicatorv2
|
||||
|
||||
import "github.com/c9s/bbgo/pkg/fixedpoint"
|
||||
|
||||
var three = fixedpoint.NewFromInt(3)
|
|
@ -65,3 +65,7 @@ func OpenPrices(source KLineSubscription) *PriceStream {
|
|||
func Volumes(source KLineSubscription) *PriceStream {
|
||||
return Price(source, types.KLineVolumeMapper)
|
||||
}
|
||||
|
||||
func HLC3(source KLineSubscription) *PriceStream {
|
||||
return Price(source, types.KLineHLC3Mapper)
|
||||
}
|
||||
|
|
|
@ -47,8 +47,8 @@ func Stoch(source KLineSubscription, window, dPeriod int) *StochStream {
|
|||
lowest := s.lowPrices.Slice.Tail(s.window).Min()
|
||||
highest := s.highPrices.Slice.Tail(s.window).Max()
|
||||
|
||||
var k float64 = 50.0
|
||||
var d float64 = 0.0
|
||||
var k = 50.0
|
||||
var d = 0.0
|
||||
|
||||
if highest != lowest {
|
||||
k = 100.0 * (kLine.Close.Float64() - lowest) / (highest - lowest)
|
||||
|
|
|
@ -10,14 +10,15 @@ import (
|
|||
"github.com/c9s/bbgo/pkg/style"
|
||||
)
|
||||
|
||||
var Two = fixedpoint.NewFromInt(2)
|
||||
var Three = fixedpoint.NewFromInt(3)
|
||||
|
||||
type Direction int
|
||||
|
||||
const DirectionUp = 1
|
||||
const DirectionNone = 0
|
||||
const DirectionDown = -1
|
||||
|
||||
var Two = fixedpoint.NewFromInt(2)
|
||||
|
||||
type KLineOrWindow interface {
|
||||
GetInterval() string
|
||||
Direction() Direction
|
||||
|
@ -668,6 +669,10 @@ func KLineVolumeMapper(k KLine) float64 {
|
|||
return k.Volume.Float64()
|
||||
}
|
||||
|
||||
func KLineHLC3Mapper(k KLine) float64 {
|
||||
return k.High.Add(k.Low).Add(k.Close).Div(Three).Float64()
|
||||
}
|
||||
|
||||
func MapKLinePrice(kLines []KLine, f KLineValueMapper) (prices []float64) {
|
||||
for _, k := range kLines {
|
||||
prices = append(prices, f(k))
|
||||
|
|
|
@ -29,6 +29,10 @@ func (f *Float64Series) Length() int {
|
|||
return len(f.Slice)
|
||||
}
|
||||
|
||||
func (f *Float64Series) Push(x float64) {
|
||||
f.Slice.Push(x)
|
||||
}
|
||||
|
||||
func (f *Float64Series) PushAndEmit(x float64) {
|
||||
f.Slice.Push(x)
|
||||
f.EmitUpdate(x)
|
||||
|
|
Loading…
Reference in New Issue
Block a user