feature/dynamicSpread: dynamicSpread as a common package

This commit is contained in:
Andy Cheng 2022-10-21 16:15:55 +08:00
parent 7de9975336
commit df05cf65d2

View File

@ -0,0 +1,275 @@
package dynamicmetric
import (
"github.com/pkg/errors"
log "github.com/sirupsen/logrus"
"math"
"github.com/c9s/bbgo/pkg/bbgo"
"github.com/c9s/bbgo/pkg/indicator"
"github.com/c9s/bbgo/pkg/types"
)
type DynamicSpread struct {
// AmpSpread calculates spreads based on kline amplitude
AmpSpread *DynamicSpreadAmp `json:"amplitude"`
// WeightedBollWidthRatioSpread calculates spreads based on two Bollinger Bands
WeightedBollWidthRatioSpread *DynamicSpreadBollWidthRatio `json:"weightedBollWidth"`
// deprecated
Enabled *bool `json:"enabled"`
// deprecated
types.IntervalWindow
// deprecated. AskSpreadScale is used to define the ask spread range with the given percentage.
AskSpreadScale *bbgo.PercentageScale `json:"askSpreadScale"`
// deprecated. BidSpreadScale is used to define the bid spread range with the given percentage.
BidSpreadScale *bbgo.PercentageScale `json:"bidSpreadScale"`
}
// Initialize dynamic spread
func (ds *DynamicSpread) Initialize(symbol string, session *bbgo.ExchangeSession) {
switch {
case ds.AmpSpread != nil:
ds.AmpSpread.initialize(symbol, session)
case ds.WeightedBollWidthRatioSpread != nil:
ds.WeightedBollWidthRatioSpread.initialize(symbol, session)
case ds.Enabled != nil && *ds.Enabled:
// backward compatibility
ds.AmpSpread = &DynamicSpreadAmp{
IntervalWindow: ds.IntervalWindow,
AskSpreadScale: ds.AskSpreadScale,
BidSpreadScale: ds.BidSpreadScale,
}
ds.AmpSpread.initialize(symbol, session)
}
}
func (ds *DynamicSpread) IsEnabled() bool {
return ds.AmpSpread != nil || ds.WeightedBollWidthRatioSpread != nil
}
// GetAskSpread returns current ask spread
func (ds *DynamicSpread) GetAskSpread() (askSpread float64, err error) {
switch {
case ds.AmpSpread != nil:
return ds.AmpSpread.getAskSpread()
case ds.WeightedBollWidthRatioSpread != nil:
return ds.WeightedBollWidthRatioSpread.getAskSpread()
default:
return 0, errors.New("dynamic spread is not enabled")
}
}
// GetBidSpread returns current dynamic bid spread
func (ds *DynamicSpread) GetBidSpread() (bidSpread float64, err error) {
switch {
case ds.AmpSpread != nil:
return ds.AmpSpread.getBidSpread()
case ds.WeightedBollWidthRatioSpread != nil:
return ds.WeightedBollWidthRatioSpread.getBidSpread()
default:
return 0, errors.New("dynamic spread is not enabled")
}
}
// DynamicSpreadAmp uses kline amplitude to calculate spreads
type DynamicSpreadAmp struct {
types.IntervalWindow
// AskSpreadScale is used to define the ask spread range with the given percentage.
AskSpreadScale *bbgo.PercentageScale `json:"askSpreadScale"`
// BidSpreadScale is used to define the bid spread range with the given percentage.
BidSpreadScale *bbgo.PercentageScale `json:"bidSpreadScale"`
dynamicAskSpread *indicator.SMA
dynamicBidSpread *indicator.SMA
}
// initialize amplitude dynamic spread and preload SMAs
func (ds *DynamicSpreadAmp) initialize(symbol string, session *bbgo.ExchangeSession) {
ds.dynamicBidSpread = &indicator.SMA{IntervalWindow: types.IntervalWindow{Interval: ds.Interval, Window: ds.Window}}
ds.dynamicAskSpread = &indicator.SMA{IntervalWindow: types.IntervalWindow{Interval: ds.Interval, Window: ds.Window}}
// Subscribe kline
session.Subscribe(types.KLineChannel, symbol, types.SubscribeOptions{
Interval: ds.Interval,
})
// Update on kline closed
session.MarketDataStream.OnKLineClosed(types.KLineWith(symbol, ds.Interval, func(kline types.KLine) {
ds.update(kline)
}))
// Preload
kLineStore, _ := session.MarketDataStore(symbol)
if klines, ok := kLineStore.KLinesOfInterval(ds.Interval); ok {
for i := 0; i < len(*klines); i++ {
ds.update((*klines)[i])
}
}
}
// update amplitude dynamic spread with kline
func (ds *DynamicSpreadAmp) update(kline types.KLine) {
// ampl is the amplitude of kline
ampl := (kline.GetHigh().Float64() - kline.GetLow().Float64()) / kline.GetOpen().Float64()
switch kline.Direction() {
case types.DirectionUp:
ds.dynamicAskSpread.Update(ampl)
ds.dynamicBidSpread.Update(0)
case types.DirectionDown:
ds.dynamicBidSpread.Update(ampl)
ds.dynamicAskSpread.Update(0)
default:
ds.dynamicAskSpread.Update(0)
ds.dynamicBidSpread.Update(0)
}
}
func (ds *DynamicSpreadAmp) getAskSpread() (askSpread float64, err error) {
if ds.AskSpreadScale != nil && ds.dynamicAskSpread.Length() >= ds.Window {
askSpread, err = ds.AskSpreadScale.Scale(ds.dynamicAskSpread.Last())
if err != nil {
log.WithError(err).Errorf("can not calculate dynamicAskSpread")
return 0, err
}
return askSpread, nil
}
return 0, errors.New("incomplete dynamic spread settings or not enough data yet")
}
func (ds *DynamicSpreadAmp) getBidSpread() (bidSpread float64, err error) {
if ds.BidSpreadScale != nil && ds.dynamicBidSpread.Length() >= ds.Window {
bidSpread, err = ds.BidSpreadScale.Scale(ds.dynamicBidSpread.Last())
if err != nil {
log.WithError(err).Errorf("can not calculate dynamicBidSpread")
return 0, err
}
return bidSpread, nil
}
return 0, errors.New("incomplete dynamic spread settings or not enough data yet")
}
// BollingerSetting is for Bollinger Band settings
type BollingerSetting struct {
types.IntervalWindow
BandWidth float64 `json:"bandWidth"`
}
type DynamicSpreadBollWidthRatio struct {
// AskSpreadScale is used to define the ask spread range with the given percentage.
AskSpreadScale *bbgo.PercentageScale `json:"askSpreadScale"`
// BidSpreadScale is used to define the bid spread range with the given percentage.
BidSpreadScale *bbgo.PercentageScale `json:"bidSpreadScale"`
// Sensitivity factor of the weighting function: 1 / (1 + exp(-(x - mid) * sensitivity / width))
// A positive number. The greater factor, the sharper weighting function. Default set to 1.0 .
Sensitivity float64 `json:"sensitivity"`
DefaultBollinger *BollingerSetting `json:"defaultBollinger"`
NeutralBollinger *BollingerSetting `json:"neutralBollinger"`
StandardIndicatorSet *bbgo.StandardIndicatorSet
neutralBoll *indicator.BOLL
defaultBoll *indicator.BOLL
}
func (ds *DynamicSpreadBollWidthRatio) initialize(symbol string, session *bbgo.ExchangeSession) {
ds.neutralBoll = ds.StandardIndicatorSet.BOLL(ds.NeutralBollinger.IntervalWindow, ds.NeutralBollinger.BandWidth)
ds.defaultBoll = ds.StandardIndicatorSet.BOLL(ds.DefaultBollinger.IntervalWindow, ds.DefaultBollinger.BandWidth)
// Subscribe kline
session.Subscribe(types.KLineChannel, symbol, types.SubscribeOptions{
Interval: ds.NeutralBollinger.Interval,
})
session.Subscribe(types.KLineChannel, symbol, types.SubscribeOptions{
Interval: ds.DefaultBollinger.Interval,
})
if ds.Sensitivity <= 0. {
ds.Sensitivity = 1.
}
}
func (ds *DynamicSpreadBollWidthRatio) getAskSpread() (askSpread float64, err error) {
askSpread, err = ds.AskSpreadScale.Scale(ds.getWeightedBBWidthRatio(true))
if err != nil {
log.WithError(err).Errorf("can not calculate dynamicAskSpread")
return 0, err
}
return askSpread, nil
}
func (ds *DynamicSpreadBollWidthRatio) getBidSpread() (bidSpread float64, err error) {
bidSpread, err = ds.BidSpreadScale.Scale(ds.getWeightedBBWidthRatio(false))
if err != nil {
log.WithError(err).Errorf("can not calculate dynamicAskSpread")
return 0, err
}
return bidSpread, nil
}
func (ds *DynamicSpreadBollWidthRatio) getWeightedBBWidthRatio(positiveSigmoid bool) float64 {
// Weight the width of Boll bands with sigmoid function and calculate the ratio after integral.
//
// Given the default band: moving average default_BB_mid, band from default_BB_lower to default_BB_upper.
// And the neutral band: from neutral_BB_lower to neutral_BB_upper.
// And a sensitivity factor alpha, which is a positive constant.
//
// width of default BB w = default_BB_upper - default_BB_lower
//
// 1 x - default_BB_mid
// sigmoid weighting function f(y) = ------------- where y = --------------------
// 1 + exp(-y) w / alpha
// Set the sigmoid weighting function:
// - To ask spread, the weighting density function d_weight(x) is sigmoid((x - default_BB_mid) / (w / alpha))
// - To bid spread, the weighting density function d_weight(x) is sigmoid((default_BB_mid - x) / (w / alpha))
// - The higher sensitivity factor alpha, the sharper weighting function.
//
// Then calculate the weighted band width ratio by taking integral of d_weight(x) from neutral_BB_lower to neutral_BB_upper:
// infinite integral of ask spread sigmoid weighting density function F(x) = (w / alpha) * ln(exp(x / (w / alpha)) + exp(default_BB_mid / (w / alpha)))
// infinite integral of bid spread sigmoid weighting density function F(x) = x - (w / alpha) * ln(exp(x / (w / alpha)) + exp(default_BB_mid / (w / alpha)))
// Note that we've rescaled the sigmoid function to fit default BB,
// the weighted default BB width is always calculated by integral(f of x from default_BB_lower to default_BB_upper)
// F(neutral_BB_upper) - F(neutral_BB_lower)
// weighted ratio = -------------------------------------------
// F(default_BB_upper) - F(default_BB_lower)
// - The wider neutral band get greater ratio
// - To ask spread, the higher neutral band get greater ratio
// - To bid spread, the lower neutral band get greater ratio
defaultMid := ds.defaultBoll.SMA.Last()
defaultUpper := ds.defaultBoll.UpBand.Last()
defaultLower := ds.defaultBoll.DownBand.Last()
defaultWidth := defaultUpper - defaultLower
neutralUpper := ds.neutralBoll.UpBand.Last()
neutralLower := ds.neutralBoll.DownBand.Last()
factor := defaultWidth / ds.Sensitivity
var weightedUpper, weightedLower, weightedDivUpper, weightedDivLower float64
if positiveSigmoid {
weightedUpper = factor * math.Log(math.Exp(neutralUpper/factor)+math.Exp(defaultMid/factor))
weightedLower = factor * math.Log(math.Exp(neutralLower/factor)+math.Exp(defaultMid/factor))
weightedDivUpper = factor * math.Log(math.Exp(defaultUpper/factor)+math.Exp(defaultMid/factor))
weightedDivLower = factor * math.Log(math.Exp(defaultLower/factor)+math.Exp(defaultMid/factor))
} else {
weightedUpper = neutralUpper - factor*math.Log(math.Exp(neutralUpper/factor)+math.Exp(defaultMid/factor))
weightedLower = neutralLower - factor*math.Log(math.Exp(neutralLower/factor)+math.Exp(defaultMid/factor))
weightedDivUpper = defaultUpper - factor*math.Log(math.Exp(defaultUpper/factor)+math.Exp(defaultMid/factor))
weightedDivLower = defaultLower - factor*math.Log(math.Exp(defaultLower/factor)+math.Exp(defaultMid/factor))
}
return (weightedUpper - weightedLower) / (weightedDivUpper - weightedDivLower)
}