package optimizer import ( "context" "fmt" "github.com/c-bata/goptuna" goptunaCMAES "github.com/c-bata/goptuna/cmaes" goptunaSOBOL "github.com/c-bata/goptuna/sobol" goptunaTPE "github.com/c-bata/goptuna/tpe" "github.com/c9s/bbgo/pkg/fixedpoint" "github.com/cheggaaa/pb/v3" "github.com/sirupsen/logrus" "golang.org/x/sync/errgroup" "math" "sync" ) const ( // HpOptimizerObjectiveEquity optimize the parameters to maximize equity gain HpOptimizerObjectiveEquity = "equity" // HpOptimizerObjectiveProfit optimize the parameters to maximize trading profit HpOptimizerObjectiveProfit = "profit" // HpOptimizerObjectiveVolume optimize the parameters to maximize trading volume HpOptimizerObjectiveVolume = "volume" ) const ( // HpOptimizerAlgorithmTPE is the implementation of Tree-structured Parzen Estimators HpOptimizerAlgorithmTPE = "tpe" // HpOptimizerAlgorithmCMAES is the implementation Covariance Matrix Adaptation Evolution Strategy HpOptimizerAlgorithmCMAES = "cmaes" // HpOptimizerAlgorithmSOBOL is the implementation Quasi-monte carlo sampling based on Sobol sequence HpOptimizerAlgorithmSOBOL = "sobol" // HpOptimizerAlgorithmRandom is the implementation random search HpOptimizerAlgorithmRandom = "random" ) type HyperparameterOptimizeTrialResult struct { Value fixedpoint.Value `json:"value"` Parameters map[string]interface{} `json:"parameters"` ID *int `json:"id,omitempty"` State string `json:"state,omitempty"` } type HyperparameterOptimizeReport struct { Name string `json:"studyName"` Objective string `json:"objective"` Parameters map[string]string `json:"domains"` Best *HyperparameterOptimizeTrialResult `json:"best"` Trials []*HyperparameterOptimizeTrialResult `json:"trials,omitempty"` } func buildBestHyperparameterOptimizeResult(study *goptuna.Study) *HyperparameterOptimizeTrialResult { val, _ := study.GetBestValue() params, _ := study.GetBestParams() return &HyperparameterOptimizeTrialResult{ Value: fixedpoint.NewFromFloat(val), Parameters: params, } } func buildHyperparameterOptimizeTrialResults(study *goptuna.Study) []*HyperparameterOptimizeTrialResult { trials, _ := study.GetTrials() results := make([]*HyperparameterOptimizeTrialResult, len(trials)) for i, trial := range trials { trialId := trial.ID trialResult := &HyperparameterOptimizeTrialResult{ ID: &trialId, Value: fixedpoint.NewFromFloat(trial.Value), Parameters: trial.Params, } results[i] = trialResult } return results } type HyperparameterOptimizer struct { SessionName string Config *Config // Workaround for goptuna/tpe parameter suggestion. Remove this after fixed. // ref: https://github.com/c-bata/goptuna/issues/236 paramSuggestionLock sync.Mutex } func (o *HyperparameterOptimizer) buildStudy(trialFinishChan chan goptuna.FrozenTrial) (*goptuna.Study, error) { var studyOpts = make([]goptuna.StudyOption, 0, 2) // maximum the profit, volume, equity gain, ...etc studyOpts = append(studyOpts, goptuna.StudyOptionDirection(goptuna.StudyDirectionMaximize)) // disable search log and collect trial progress studyOpts = append(studyOpts, goptuna.StudyOptionLogger(nil)) studyOpts = append(studyOpts, goptuna.StudyOptionTrialNotifyChannel(trialFinishChan)) // the search algorithm var sampler goptuna.Sampler = nil var relativeSampler goptuna.RelativeSampler = nil switch o.Config.Algorithm { case HpOptimizerAlgorithmRandom: sampler = goptuna.NewRandomSampler() case HpOptimizerAlgorithmTPE: sampler = goptunaTPE.NewSampler() case HpOptimizerAlgorithmCMAES: relativeSampler = goptunaCMAES.NewSampler(goptunaCMAES.SamplerOptionNStartupTrials(5)) case HpOptimizerAlgorithmSOBOL: relativeSampler = goptunaSOBOL.NewSampler() } if sampler != nil { studyOpts = append(studyOpts, goptuna.StudyOptionSampler(sampler)) } else { studyOpts = append(studyOpts, goptuna.StudyOptionRelativeSampler(relativeSampler)) } return goptuna.CreateStudy(o.SessionName, studyOpts...) } func (o *HyperparameterOptimizer) buildParamDomains() (map[string]string, []paramDomain) { labelPaths := make(map[string]string) domains := make([]paramDomain, 0, len(o.Config.Matrix)) for _, selector := range o.Config.Matrix { var domain paramDomain switch selector.Type { case selectorTypeRange, selectorTypeRangeFloat: if selector.Step.IsZero() { domain = &floatRangeDomain{ paramDomainBase: paramDomainBase{ label: selector.Label, path: selector.Path, }, min: selector.Min.Float64(), max: selector.Max.Float64(), } } else { domain = &floatDiscreteRangeDomain{ paramDomainBase: paramDomainBase{ label: selector.Label, path: selector.Path, }, min: selector.Min.Float64(), max: selector.Max.Float64(), step: selector.Step.Float64(), } } case selectorTypeRangeInt: if selector.Step.IsZero() { domain = &intRangeDomain{ paramDomainBase: paramDomainBase{ label: selector.Label, path: selector.Path, }, min: selector.Min.Int(), max: selector.Max.Int(), } } else { domain = &intStepRangeDomain{ paramDomainBase: paramDomainBase{ label: selector.Label, path: selector.Path, }, min: selector.Min.Int(), max: selector.Max.Int(), step: selector.Step.Int(), } } case selectorTypeIterate, selectorTypeString: domain = &stringDomain{ paramDomainBase: paramDomainBase{ label: selector.Label, path: selector.Path, }, options: selector.Values, } case selectorTypeBool: domain = &boolDomain{ paramDomainBase: paramDomainBase{ label: selector.Label, path: selector.Path, }, } default: // unknown parameter type, skip continue } labelPaths[selector.Label] = selector.Path domains = append(domains, domain) } return labelPaths, domains } func (o *HyperparameterOptimizer) buildObjective(executor Executor, configJson []byte, paramDomains []paramDomain) goptuna.FuncObjective { var metricValueFunc MetricValueFunc switch o.Config.Objective { case HpOptimizerObjectiveProfit: metricValueFunc = TotalProfitMetricValueFunc case HpOptimizerObjectiveVolume: metricValueFunc = TotalVolume case HpOptimizerObjectiveEquity: metricValueFunc = TotalEquityDiff } return func(trial goptuna.Trial) (float64, error) { trialConfig, err := func(trialConfig []byte) ([]byte, error) { o.paramSuggestionLock.Lock() defer o.paramSuggestionLock.Unlock() for _, domain := range paramDomains { if patch, err := domain.buildPatch(&trial); err != nil { return nil, err } else if patchedConfig, err := patch.ApplyIndent(trialConfig, " "); err != nil { return nil, err } else { trialConfig = patchedConfig } } return trialConfig, nil }(configJson) if err != nil { return 0.0, err } summary, err := executor.Execute(trialConfig) if err != nil { return 0.0, err } // By config, the Goptuna optimize the parameters by maximize the objective output. return metricValueFunc(summary).Float64(), nil } } func (o *HyperparameterOptimizer) Run(executor Executor, configJson []byte) (*HyperparameterOptimizeReport, error) { labelPaths, paramDomains := o.buildParamDomains() objective := o.buildObjective(executor, configJson, paramDomains) maxEvaluation := o.Config.MaxEvaluation numOfProcesses := o.Config.Executor.LocalExecutorConfig.MaxNumberOfProcesses if numOfProcesses > maxEvaluation { numOfProcesses = maxEvaluation } maxEvaluationPerProcess := maxEvaluation / numOfProcesses if maxEvaluation%numOfProcesses > 0 { maxEvaluationPerProcess++ } trialFinishChan := make(chan goptuna.FrozenTrial, 128) allTrailFinishChan := make(chan struct{}) bar := pb.Full.Start(maxEvaluation) bar.SetTemplateString(`{{ string . "log" | green}} | {{counters . }} {{bar . }} {{percent . }} {{etime . }} {{rtime . "ETA %s"}}`) go func() { defer close(allTrailFinishChan) var bestVal = math.Inf(-1) for result := range trialFinishChan { log.WithFields(logrus.Fields{"ID": result.ID, "evaluation": result.Value, "state": result.State}).Debug("trial finished") if result.State == goptuna.TrialStateFail { log.WithFields(result.Params).Errorf("failed at trial #%d", result.ID) } if result.Value > bestVal { bestVal = result.Value } bar.Set("log", fmt.Sprintf("best value: %v", bestVal)) bar.Increment() } }() study, err := o.buildStudy(trialFinishChan) if err != nil { return nil, err } eg, ctx := errgroup.WithContext(context.Background()) study.WithContext(ctx) for i := 0; i < numOfProcesses; i++ { processEvaluations := maxEvaluationPerProcess if processEvaluations > maxEvaluation { processEvaluations = maxEvaluation } eg.Go(func() error { return study.Optimize(objective, processEvaluations) }) maxEvaluation -= processEvaluations } if err := eg.Wait(); err != nil { return nil, err } close(trialFinishChan) <-allTrailFinishChan bar.Finish() return &HyperparameterOptimizeReport{ Name: o.SessionName, Objective: o.Config.Objective, Parameters: labelPaths, Best: buildBestHyperparameterOptimizeResult(study), Trials: buildHyperparameterOptimizeTrialResults(study), }, nil }