mirror of
https://github.com/c9s/bbgo.git
synced 2024-11-14 02:53:50 +00:00
b4e32a9ba7
User is now able to stop trials by sending system signal (SIGINT & SIGTERM) and see the report earlier at any time.
298 lines
9.3 KiB
Go
298 lines
9.3 KiB
Go
package optimizer
|
|
|
|
import (
|
|
"context"
|
|
"fmt"
|
|
"github.com/c-bata/goptuna"
|
|
goptunaCMAES "github.com/c-bata/goptuna/cmaes"
|
|
goptunaSOBOL "github.com/c-bata/goptuna/sobol"
|
|
goptunaTPE "github.com/c-bata/goptuna/tpe"
|
|
"github.com/c9s/bbgo/pkg/fixedpoint"
|
|
"github.com/cheggaaa/pb/v3"
|
|
"github.com/sirupsen/logrus"
|
|
"golang.org/x/sync/errgroup"
|
|
"math"
|
|
"sync"
|
|
)
|
|
|
|
const (
|
|
// HpOptimizerObjectiveEquity optimize the parameters to maximize equity gain
|
|
HpOptimizerObjectiveEquity = "equity"
|
|
// HpOptimizerObjectiveProfit optimize the parameters to maximize trading profit
|
|
HpOptimizerObjectiveProfit = "profit"
|
|
// HpOptimizerObjectiveVolume optimize the parameters to maximize trading volume
|
|
HpOptimizerObjectiveVolume = "volume"
|
|
)
|
|
|
|
const (
|
|
// HpOptimizerAlgorithmTPE is the implementation of Tree-structured Parzen Estimators
|
|
HpOptimizerAlgorithmTPE = "tpe"
|
|
// HpOptimizerAlgorithmCMAES is the implementation Covariance Matrix Adaptation Evolution Strategy
|
|
HpOptimizerAlgorithmCMAES = "cmaes"
|
|
// HpOptimizerAlgorithmSOBOL is the implementation Quasi-monte carlo sampling based on Sobol sequence
|
|
HpOptimizerAlgorithmSOBOL = "sobol"
|
|
// HpOptimizerAlgorithmRandom is the implementation random search
|
|
HpOptimizerAlgorithmRandom = "random"
|
|
)
|
|
|
|
type HyperparameterOptimizeTrialResult struct {
|
|
Value fixedpoint.Value `json:"value"`
|
|
Parameters map[string]interface{} `json:"parameters"`
|
|
ID *int `json:"id,omitempty"`
|
|
State string `json:"state,omitempty"`
|
|
}
|
|
|
|
type HyperparameterOptimizeReport struct {
|
|
Name string `json:"studyName"`
|
|
Objective string `json:"objective"`
|
|
Parameters map[string]string `json:"domains"`
|
|
Best *HyperparameterOptimizeTrialResult `json:"best"`
|
|
Trials []*HyperparameterOptimizeTrialResult `json:"trials,omitempty"`
|
|
}
|
|
|
|
func buildBestHyperparameterOptimizeResult(study *goptuna.Study) *HyperparameterOptimizeTrialResult {
|
|
val, _ := study.GetBestValue()
|
|
params, _ := study.GetBestParams()
|
|
return &HyperparameterOptimizeTrialResult{
|
|
Value: fixedpoint.NewFromFloat(val),
|
|
Parameters: params,
|
|
}
|
|
}
|
|
|
|
func buildHyperparameterOptimizeTrialResults(study *goptuna.Study) []*HyperparameterOptimizeTrialResult {
|
|
trials, _ := study.GetTrials()
|
|
results := make([]*HyperparameterOptimizeTrialResult, len(trials))
|
|
for i, trial := range trials {
|
|
trialId := trial.ID
|
|
trialResult := &HyperparameterOptimizeTrialResult{
|
|
ID: &trialId,
|
|
Value: fixedpoint.NewFromFloat(trial.Value),
|
|
Parameters: trial.Params,
|
|
}
|
|
results[i] = trialResult
|
|
}
|
|
return results
|
|
}
|
|
|
|
type HyperparameterOptimizer struct {
|
|
SessionName string
|
|
Config *Config
|
|
|
|
// Workaround for goptuna/tpe parameter suggestion. Remove this after fixed.
|
|
// ref: https://github.com/c-bata/goptuna/issues/236
|
|
paramSuggestionLock sync.Mutex
|
|
}
|
|
|
|
func (o *HyperparameterOptimizer) buildStudy(trialFinishChan chan goptuna.FrozenTrial) (*goptuna.Study, error) {
|
|
var studyOpts = make([]goptuna.StudyOption, 0, 2)
|
|
|
|
// maximum the profit, volume, equity gain, ...etc
|
|
studyOpts = append(studyOpts, goptuna.StudyOptionDirection(goptuna.StudyDirectionMaximize))
|
|
|
|
// disable search log and collect trial progress
|
|
studyOpts = append(studyOpts, goptuna.StudyOptionLogger(nil))
|
|
studyOpts = append(studyOpts, goptuna.StudyOptionTrialNotifyChannel(trialFinishChan))
|
|
|
|
// the search algorithm
|
|
var sampler goptuna.Sampler = nil
|
|
var relativeSampler goptuna.RelativeSampler = nil
|
|
switch o.Config.Algorithm {
|
|
case HpOptimizerAlgorithmRandom:
|
|
sampler = goptuna.NewRandomSampler()
|
|
case HpOptimizerAlgorithmTPE:
|
|
sampler = goptunaTPE.NewSampler()
|
|
case HpOptimizerAlgorithmCMAES:
|
|
relativeSampler = goptunaCMAES.NewSampler(goptunaCMAES.SamplerOptionNStartupTrials(5))
|
|
case HpOptimizerAlgorithmSOBOL:
|
|
relativeSampler = goptunaSOBOL.NewSampler()
|
|
}
|
|
if sampler != nil {
|
|
studyOpts = append(studyOpts, goptuna.StudyOptionSampler(sampler))
|
|
} else {
|
|
studyOpts = append(studyOpts, goptuna.StudyOptionRelativeSampler(relativeSampler))
|
|
}
|
|
|
|
return goptuna.CreateStudy(o.SessionName, studyOpts...)
|
|
}
|
|
|
|
func (o *HyperparameterOptimizer) buildParamDomains() (map[string]string, []paramDomain) {
|
|
labelPaths := make(map[string]string)
|
|
domains := make([]paramDomain, 0, len(o.Config.Matrix))
|
|
|
|
for _, selector := range o.Config.Matrix {
|
|
var domain paramDomain
|
|
switch selector.Type {
|
|
case selectorTypeRange, selectorTypeRangeFloat:
|
|
if selector.Step.IsZero() {
|
|
domain = &floatRangeDomain{
|
|
paramDomainBase: paramDomainBase{
|
|
label: selector.Label,
|
|
path: selector.Path,
|
|
},
|
|
min: selector.Min.Float64(),
|
|
max: selector.Max.Float64(),
|
|
}
|
|
} else {
|
|
domain = &floatDiscreteRangeDomain{
|
|
paramDomainBase: paramDomainBase{
|
|
label: selector.Label,
|
|
path: selector.Path,
|
|
},
|
|
min: selector.Min.Float64(),
|
|
max: selector.Max.Float64(),
|
|
step: selector.Step.Float64(),
|
|
}
|
|
}
|
|
case selectorTypeRangeInt:
|
|
if selector.Step.IsZero() {
|
|
domain = &intRangeDomain{
|
|
paramDomainBase: paramDomainBase{
|
|
label: selector.Label,
|
|
path: selector.Path,
|
|
},
|
|
min: selector.Min.Int(),
|
|
max: selector.Max.Int(),
|
|
}
|
|
} else {
|
|
domain = &intStepRangeDomain{
|
|
paramDomainBase: paramDomainBase{
|
|
label: selector.Label,
|
|
path: selector.Path,
|
|
},
|
|
min: selector.Min.Int(),
|
|
max: selector.Max.Int(),
|
|
step: selector.Step.Int(),
|
|
}
|
|
}
|
|
case selectorTypeIterate, selectorTypeString:
|
|
domain = &stringDomain{
|
|
paramDomainBase: paramDomainBase{
|
|
label: selector.Label,
|
|
path: selector.Path,
|
|
},
|
|
options: selector.Values,
|
|
}
|
|
case selectorTypeBool:
|
|
domain = &boolDomain{
|
|
paramDomainBase: paramDomainBase{
|
|
label: selector.Label,
|
|
path: selector.Path,
|
|
},
|
|
}
|
|
default:
|
|
// unknown parameter type, skip
|
|
continue
|
|
}
|
|
labelPaths[selector.Label] = selector.Path
|
|
domains = append(domains, domain)
|
|
}
|
|
return labelPaths, domains
|
|
}
|
|
|
|
func (o *HyperparameterOptimizer) buildObjective(executor Executor, configJson []byte, paramDomains []paramDomain) goptuna.FuncObjective {
|
|
var metricValueFunc MetricValueFunc
|
|
switch o.Config.Objective {
|
|
case HpOptimizerObjectiveProfit:
|
|
metricValueFunc = TotalProfitMetricValueFunc
|
|
case HpOptimizerObjectiveVolume:
|
|
metricValueFunc = TotalVolume
|
|
case HpOptimizerObjectiveEquity:
|
|
metricValueFunc = TotalEquityDiff
|
|
}
|
|
|
|
return func(trial goptuna.Trial) (float64, error) {
|
|
trialConfig, err := func(trialConfig []byte) ([]byte, error) {
|
|
o.paramSuggestionLock.Lock()
|
|
defer o.paramSuggestionLock.Unlock()
|
|
|
|
for _, domain := range paramDomains {
|
|
if patch, err := domain.buildPatch(&trial); err != nil {
|
|
return nil, err
|
|
} else if patchedConfig, err := patch.ApplyIndent(trialConfig, " "); err != nil {
|
|
return nil, err
|
|
} else {
|
|
trialConfig = patchedConfig
|
|
}
|
|
}
|
|
return trialConfig, nil
|
|
}(configJson)
|
|
if err != nil {
|
|
return 0.0, err
|
|
}
|
|
|
|
summary, err := executor.Execute(trialConfig)
|
|
if err != nil {
|
|
return 0.0, err
|
|
}
|
|
// By config, the Goptuna optimize the parameters by maximize the objective output.
|
|
return metricValueFunc(summary).Float64(), nil
|
|
}
|
|
}
|
|
|
|
func (o *HyperparameterOptimizer) Run(ctx context.Context, executor Executor, configJson []byte) (*HyperparameterOptimizeReport, error) {
|
|
labelPaths, paramDomains := o.buildParamDomains()
|
|
objective := o.buildObjective(executor, configJson, paramDomains)
|
|
|
|
maxEvaluation := o.Config.MaxEvaluation
|
|
numOfProcesses := o.Config.Executor.LocalExecutorConfig.MaxNumberOfProcesses
|
|
if numOfProcesses > maxEvaluation {
|
|
numOfProcesses = maxEvaluation
|
|
}
|
|
maxEvaluationPerProcess := maxEvaluation / numOfProcesses
|
|
if maxEvaluation%numOfProcesses > 0 {
|
|
maxEvaluationPerProcess++
|
|
}
|
|
|
|
trialFinishChan := make(chan goptuna.FrozenTrial, 128)
|
|
allTrailFinishChan := make(chan struct{})
|
|
bar := pb.Full.Start(maxEvaluation)
|
|
bar.SetTemplateString(`{{ string . "log" | green}} | {{counters . }} {{bar . }} {{percent . }} {{etime . }} {{rtime . "ETA %s"}}`)
|
|
|
|
go func() {
|
|
defer close(allTrailFinishChan)
|
|
var bestVal = math.Inf(-1)
|
|
for result := range trialFinishChan {
|
|
log.WithFields(logrus.Fields{"ID": result.ID, "evaluation": result.Value, "state": result.State}).Debug("trial finished")
|
|
if result.State == goptuna.TrialStateFail {
|
|
log.WithFields(result.Params).Errorf("failed at trial #%d", result.ID)
|
|
}
|
|
if result.Value > bestVal {
|
|
bestVal = result.Value
|
|
}
|
|
bar.Set("log", fmt.Sprintf("best value: %v", bestVal))
|
|
bar.Increment()
|
|
}
|
|
}()
|
|
|
|
study, err := o.buildStudy(trialFinishChan)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
eg, studyCtx := errgroup.WithContext(ctx)
|
|
study.WithContext(studyCtx)
|
|
for i := 0; i < numOfProcesses; i++ {
|
|
processEvaluations := maxEvaluationPerProcess
|
|
if processEvaluations > maxEvaluation {
|
|
processEvaluations = maxEvaluation
|
|
}
|
|
eg.Go(func() error {
|
|
return study.Optimize(objective, processEvaluations)
|
|
})
|
|
maxEvaluation -= processEvaluations
|
|
}
|
|
if err := eg.Wait(); err != nil && ctx.Err() != context.Canceled {
|
|
return nil, err
|
|
}
|
|
close(trialFinishChan)
|
|
<-allTrailFinishChan
|
|
bar.Finish()
|
|
|
|
return &HyperparameterOptimizeReport{
|
|
Name: o.SessionName,
|
|
Objective: o.Config.Objective,
|
|
Parameters: labelPaths,
|
|
Best: buildBestHyperparameterOptimizeResult(study),
|
|
Trials: buildHyperparameterOptimizeTrialResults(study),
|
|
}, nil
|
|
}
|