bbgo_origin/pkg/strategy/grid2/grid_test.go
2023-02-15 16:05:45 +08:00

281 lines
7.6 KiB
Go

//go:build !dnum
package grid2
import (
"testing"
"github.com/stretchr/testify/assert"
"github.com/c9s/bbgo/pkg/fixedpoint"
)
func number(a interface{}) fixedpoint.Value {
switch v := a.(type) {
case string:
return fixedpoint.MustNewFromString(v)
case int:
return fixedpoint.NewFromInt(int64(v))
case int64:
return fixedpoint.NewFromInt(int64(v))
case float64:
return fixedpoint.NewFromFloat(v)
}
return fixedpoint.Zero
}
func TestNewGrid(t *testing.T) {
upper := fixedpoint.NewFromFloat(500.0)
lower := fixedpoint.NewFromFloat(100.0)
size := fixedpoint.NewFromFloat(101.0)
grid := NewGrid(lower, upper, size, number(0.01))
grid.CalculateArithmeticPins()
assert.Equal(t, upper, grid.UpperPrice)
assert.Equal(t, lower, grid.LowerPrice)
assert.Equal(t, fixedpoint.NewFromFloat(4), grid.Spread)
if assert.Len(t, grid.Pins, 101) {
assert.Equal(t, Pin(number(100.0)), grid.Pins[0])
assert.Equal(t, Pin(number(500.0)), grid.Pins[100])
}
}
func TestGrid_HasPin(t *testing.T) {
upper := fixedpoint.NewFromFloat(500.0)
lower := fixedpoint.NewFromFloat(100.0)
size := fixedpoint.NewFromFloat(101.0)
grid := NewGrid(lower, upper, size, number(0.01))
grid.CalculateArithmeticPins()
assert.True(t, grid.HasPin(Pin(number(100.0))))
assert.True(t, grid.HasPin(Pin(number(500.0))))
assert.False(t, grid.HasPin(Pin(number(101.0))))
}
func TestGrid_ExtendUpperPrice(t *testing.T) {
upper := number(500.0)
lower := number(100.0)
size := number(5.0)
grid := NewGrid(lower, upper, size, number(0.01))
grid.CalculateArithmeticPins()
originalSpread := grid.Spread
t.Logf("pins: %+v", grid.Pins)
assert.Equal(t, number(100.0), originalSpread)
assert.Len(t, grid.Pins, 5)
newPins := grid.ExtendUpperPrice(number(1000.0))
assert.Len(t, grid.Pins, 10)
assert.Len(t, newPins, 5)
assert.Equal(t, originalSpread, grid.Spread)
t.Logf("pins: %+v", grid.Pins)
}
func TestGrid_ExtendLowerPrice(t *testing.T) {
upper := fixedpoint.NewFromFloat(3000.0)
lower := fixedpoint.NewFromFloat(2000.0)
size := fixedpoint.NewFromFloat(11.0)
grid := NewGrid(lower, upper, size, number(0.01))
grid.CalculateArithmeticPins()
assert.Equal(t, Pin(number(2000.0)), grid.BottomPin(), "bottom pin should be 1000.0")
assert.Equal(t, Pin(number(3000.0)), grid.TopPin(), "top pin should be 3000.0")
assert.Len(t, grid.Pins, 11)
// spread = (3000 - 2000) / 10.0
expectedSpread := fixedpoint.NewFromFloat(100.0)
assert.Equal(t, expectedSpread, grid.Spread)
originalSpread := grid.Spread
newPins := grid.ExtendLowerPrice(fixedpoint.NewFromFloat(1000.0))
assert.Equal(t, originalSpread, grid.Spread)
t.Logf("newPins: %+v", newPins)
// 100 = (2000-1000) / 10
if assert.Len(t, newPins, 10) {
assert.Equal(t, Pin(number(1000.0)), newPins[0])
assert.Equal(t, Pin(number(1900.0)), newPins[len(newPins)-1])
}
assert.Equal(t, expectedSpread, grid.Spread)
if assert.Len(t, grid.Pins, 21) {
assert.Equal(t, Pin(number(1000.0)), grid.BottomPin(), "bottom pin should be 1000.0")
assert.Equal(t, Pin(number(3000.0)), grid.TopPin(), "top pin should be 3000.0")
}
}
func TestGrid_NextLowerPin(t *testing.T) {
upper := number(500.0)
lower := number(100.0)
size := number(5.0)
grid := NewGrid(lower, upper, size, number(0.01))
grid.CalculateArithmeticPins()
t.Logf("pins: %+v", grid.Pins)
next, ok := grid.NextLowerPin(number(200.0))
assert.True(t, ok)
assert.Equal(t, Pin(number(100.0)), next)
next, ok = grid.NextLowerPin(number(150.0))
assert.False(t, ok)
assert.Equal(t, Pin(fixedpoint.Zero), next)
}
func TestGrid_HasPrice(t *testing.T) {
t.Run("case1", func(t *testing.T) {
upper := number(500.0)
lower := number(100.0)
size := number(5.0)
grid := NewGrid(lower, upper, size, number(0.01))
grid.CalculateArithmeticPins()
assert.True(t, grid.HasPrice(number(500.0)), "upper price")
assert.True(t, grid.HasPrice(number(100.0)), "lower price")
assert.True(t, grid.HasPrice(number(200.0)), "found 200 price ok")
assert.True(t, grid.HasPrice(number(300.0)), "found 300 price ok")
})
t.Run("case2", func(t *testing.T) {
upper := number(0.9)
lower := number(0.1)
size := number(7.0)
grid := NewGrid(lower, upper, size, number(0.00000001))
grid.CalculateArithmeticPins()
assert.Equal(t, []Pin{
Pin(number(0.1)),
Pin(number(0.23333333)),
Pin(number(0.36666666)),
Pin(number(0.49999999)),
Pin(number(0.63333332)),
Pin(number(0.76666665)),
Pin(number(0.9)),
}, grid.Pins)
assert.False(t, grid.HasPrice(number(200.0)), "out of range")
assert.True(t, grid.HasPrice(number(0.9)), "upper price")
assert.True(t, grid.HasPrice(number(0.1)), "lower price")
assert.True(t, grid.HasPrice(number(0.49999999)), "found 0.49999999 price ok")
})
t.Run("case3", func(t *testing.T) {
upper := number(0.9)
lower := number(0.1)
size := number(7.0)
grid := NewGrid(lower, upper, size, number(0.0001))
grid.CalculateArithmeticPins()
assert.Equal(t, []Pin{
Pin(number(0.1)),
Pin(number(0.2333)),
Pin(number(0.3666)),
Pin(number(0.5000)),
Pin(number(0.6333)),
Pin(number(0.7666)),
Pin(number(0.9)),
}, grid.Pins)
assert.False(t, grid.HasPrice(number(200.0)), "out of range")
assert.True(t, grid.HasPrice(number(0.9)), "upper price")
assert.True(t, grid.HasPrice(number(0.1)), "lower price")
assert.True(t, grid.HasPrice(number(0.5)), "found 0.5 price ok")
assert.True(t, grid.HasPrice(number(0.2333)), "found 0.2333 price ok")
})
}
func TestGrid_NextHigherPin(t *testing.T) {
upper := number(500.0)
lower := number(100.0)
size := number(5.0)
grid := NewGrid(lower, upper, size, number(0.01))
grid.CalculateArithmeticPins()
t.Logf("pins: %+v", grid.Pins)
next, ok := grid.NextHigherPin(number(100.0))
assert.True(t, ok)
assert.Equal(t, Pin(number(200.0)), next)
next, ok = grid.NextHigherPin(number(400.0))
assert.True(t, ok)
assert.Equal(t, Pin(number(500.0)), next)
next, ok = grid.NextHigherPin(number(500.0))
assert.False(t, ok)
assert.Equal(t, Pin(fixedpoint.Zero), next)
}
func Test_calculateArithmeticPins(t *testing.T) {
type args struct {
lower fixedpoint.Value
upper fixedpoint.Value
size fixedpoint.Value
tickSize fixedpoint.Value
}
tests := []struct {
name string
args args
want []Pin
}{
{
// (3000-1000)/30 = 66.6666666
name: "simple",
args: args{
lower: number(1000.0),
upper: number(3000.0),
size: number(30.0),
tickSize: number(0.01),
},
want: []Pin{
Pin(number(1000.0)),
Pin(number(1066.660)),
Pin(number(1133.330)),
Pin(number("1200.00")),
Pin(number(1266.660)),
Pin(number(1333.330)),
Pin(number(1400.000)),
Pin(number(1466.660)),
Pin(number(1533.330)),
Pin(number(1600.000)),
Pin(number(1666.660)),
Pin(number(1733.330)),
Pin(number(1800.000)),
Pin(number(1866.660)),
Pin(number(1933.330)),
Pin(number(2000.000)),
Pin(number(2066.660)),
Pin(number(2133.330)),
Pin(number("2200.00")),
Pin(number(2266.660)),
Pin(number(2333.330)),
Pin(number("2400.00")),
Pin(number(2466.660)),
Pin(number(2533.330)),
Pin(number("2600.00")),
Pin(number(2666.660)),
Pin(number(2733.330)),
Pin(number(2800.000)),
Pin(number(2866.660)),
Pin(number(2933.330)),
},
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
spread := tt.args.upper.Sub(tt.args.lower).Div(tt.args.size)
pins := calculateArithmeticPins(tt.args.lower, tt.args.upper, spread, tt.args.tickSize)
for i := 0; i < len(tt.want); i++ {
assert.InDelta(t, fixedpoint.Value(tt.want[i]).Float64(),
fixedpoint.Value(pins[i]).Float64(),
0.001,
"calculateArithmeticPins(%v, %v, %v, %v)", tt.args.lower, tt.args.upper, tt.args.size, tt.args.tickSize)
}
})
}
}