freqtrade_origin/freqtrade/data/history/history_utils.py

681 lines
25 KiB
Python
Raw Permalink Normal View History

import logging
import operator
2023-05-14 07:08:31 +00:00
from datetime import datetime, timedelta
2018-12-15 12:54:35 +00:00
from pathlib import Path
2022-02-01 18:11:51 +00:00
from pandas import DataFrame, concat
from freqtrade.configuration import TimeRange
from freqtrade.constants import (
DATETIME_PRINT_FORMAT,
DEFAULT_DATAFRAME_COLUMNS,
DL_DATA_TIMEFRAMES,
DOCS_LINK,
Config,
)
from freqtrade.data.converter import (
clean_ohlcv_dataframe,
convert_trades_to_ohlcv,
trades_df_remove_duplicates,
trades_list_to_df,
)
from freqtrade.data.history.datahandlers import IDataHandler, get_datahandler
from freqtrade.enums import CandleType, TradingMode
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import Exchange
from freqtrade.plugins.pairlist.pairlist_helpers import dynamic_expand_pairlist
from freqtrade.util import dt_now, dt_ts, format_ms_time, get_progress_tracker
from freqtrade.util.migrations import migrate_data
2020-09-28 17:39:41 +00:00
logger = logging.getLogger(__name__)
2024-05-12 15:41:55 +00:00
def load_pair_history(
pair: str,
timeframe: str,
datadir: Path,
*,
timerange: TimeRange | None = None,
2024-05-12 15:41:55 +00:00
fill_up_missing: bool = True,
drop_incomplete: bool = False,
startup_candles: int = 0,
data_format: str | None = None,
data_handler: IDataHandler | None = None,
2024-05-12 15:41:55 +00:00
candle_type: CandleType = CandleType.SPOT,
) -> DataFrame:
"""
Load cached ohlcv history for the given pair.
2019-06-09 12:40:45 +00:00
:param pair: Pair to load data for
:param timeframe: Timeframe (e.g. "5m")
2019-06-09 12:40:45 +00:00
:param datadir: Path to the data storage location.
2019-12-25 15:12:20 +00:00
:param data_format: Format of the data. Ignored if data_handler is set.
2019-06-09 12:40:45 +00:00
:param timerange: Limit data to be loaded to this timerange
:param fill_up_missing: Fill missing values with "No action"-candles
:param drop_incomplete: Drop last candle assuming it may be incomplete.
2019-10-20 12:02:53 +00:00
:param startup_candles: Additional candles to load at the start of the period
:param data_handler: Initialized data-handler to use.
Will be initialized from data_format if not set
2021-12-03 11:23:35 +00:00
:param candle_type: Any of the enum CandleType (must match trading mode!)
:return: DataFrame with ohlcv data, or empty DataFrame
"""
2019-12-25 15:12:20 +00:00
data_handler = get_datahandler(datadir, data_format, data_handler)
2024-05-12 15:41:55 +00:00
return data_handler.ohlcv_load(
pair=pair,
timeframe=timeframe,
timerange=timerange,
fill_missing=fill_up_missing,
drop_incomplete=drop_incomplete,
startup_candles=startup_candles,
candle_type=candle_type,
)
def load_data(
datadir: Path,
timeframe: str,
pairs: list[str],
2024-05-12 15:41:55 +00:00
*,
timerange: TimeRange | None = None,
2024-05-12 15:41:55 +00:00
fill_up_missing: bool = True,
startup_candles: int = 0,
fail_without_data: bool = False,
data_format: str = "feather",
candle_type: CandleType = CandleType.SPOT,
user_futures_funding_rate: int | None = None,
) -> dict[str, DataFrame]:
"""
Load ohlcv history data for a list of pairs.
2019-10-20 12:02:53 +00:00
:param datadir: Path to the data storage location.
:param timeframe: Timeframe (e.g. "5m")
2019-10-20 12:02:53 +00:00
:param pairs: List of pairs to load
:param timerange: Limit data to be loaded to this timerange
:param fill_up_missing: Fill missing values with "No action"-candles
:param startup_candles: Additional candles to load at the start of the period
:param fail_without_data: Raise OperationalException if no data is found.
2019-12-28 13:57:39 +00:00
:param data_format: Data format which should be used. Defaults to json
2021-12-03 11:23:35 +00:00
:param candle_type: Any of the enum CandleType (must match trading mode!)
2019-10-20 12:02:53 +00:00
:return: dict(<pair>:<Dataframe>)
"""
result: dict[str, DataFrame] = {}
if startup_candles > 0 and timerange:
2024-05-12 15:41:55 +00:00
logger.info(f"Using indicator startup period: {startup_candles} ...")
2019-12-25 15:12:20 +00:00
data_handler = get_datahandler(datadir, data_format)
for pair in pairs:
2024-05-12 15:41:55 +00:00
hist = load_pair_history(
pair=pair,
timeframe=timeframe,
datadir=datadir,
timerange=timerange,
fill_up_missing=fill_up_missing,
startup_candles=startup_candles,
data_handler=data_handler,
candle_type=candle_type,
)
if not hist.empty:
result[pair] = hist
else:
if candle_type is CandleType.FUNDING_RATE and user_futures_funding_rate is not None:
2024-02-09 12:12:22 +00:00
logger.warn(f"{pair} using user specified [{user_futures_funding_rate}]")
2022-08-18 05:20:49 +00:00
elif candle_type not in (CandleType.SPOT, CandleType.FUTURES):
2024-02-09 12:12:22 +00:00
result[pair] = DataFrame(columns=["date", "open", "close", "high", "low", "volume"])
if fail_without_data and not result:
raise OperationalException("No data found. Terminating.")
return result
2024-05-12 15:41:55 +00:00
def refresh_data(
*,
datadir: Path,
timeframe: str,
pairs: list[str],
2024-05-12 15:41:55 +00:00
exchange: Exchange,
data_format: str | None = None,
timerange: TimeRange | None = None,
2024-05-12 15:41:55 +00:00
candle_type: CandleType,
) -> None:
"""
Refresh ohlcv history data for a list of pairs.
:param datadir: Path to the data storage location.
:param timeframe: Timeframe (e.g. "5m")
:param pairs: List of pairs to load
:param exchange: Exchange object
2021-06-25 17:13:31 +00:00
:param data_format: dataformat to use
:param timerange: Limit data to be loaded to this timerange
2021-12-03 11:23:35 +00:00
:param candle_type: Any of the enum CandleType (must match trading mode!)
"""
2019-12-25 15:12:20 +00:00
data_handler = get_datahandler(datadir, data_format)
for pair in pairs:
2024-05-12 15:41:55 +00:00
_download_pair_history(
pair=pair,
timeframe=timeframe,
datadir=datadir,
timerange=timerange,
exchange=exchange,
data_handler=data_handler,
candle_type=candle_type,
)
def _load_cached_data_for_updating(
pair: str,
timeframe: str,
timerange: TimeRange | None,
data_handler: IDataHandler,
2022-04-30 13:28:01 +00:00
candle_type: CandleType,
prepend: bool = False,
) -> tuple[DataFrame, int | None, int | None]:
"""
Load cached data to download more data.
2019-10-06 15:10:40 +00:00
If timerange is passed in, checks whether data from an before the stored data will be
downloaded.
If that's the case then what's available should be completely overwritten.
2019-12-27 09:12:56 +00:00
Otherwise downloads always start at the end of the available data to avoid data gaps.
Note: Only used by download_pair_history().
"""
start = None
2022-04-30 13:28:01 +00:00
end = None
if timerange:
2024-05-12 15:41:55 +00:00
if timerange.starttype == "date":
start = timerange.startdt
2024-05-12 15:41:55 +00:00
if timerange.stoptype == "date":
end = timerange.stopdt
# Intentionally don't pass timerange in - since we need to load the full dataset.
2024-05-12 15:41:55 +00:00
data = data_handler.ohlcv_load(
pair,
timeframe=timeframe,
timerange=None,
fill_missing=False,
drop_incomplete=True,
warn_no_data=False,
candle_type=candle_type,
)
if not data.empty:
2024-05-12 15:41:55 +00:00
if not prepend and start and start < data.iloc[0]["date"]:
# Earlier data than existing data requested, redownload all
2019-12-27 09:11:49 +00:00
data = DataFrame(columns=DEFAULT_DATAFRAME_COLUMNS)
else:
2022-04-30 13:28:01 +00:00
if prepend:
2024-05-12 15:41:55 +00:00
end = data.iloc[0]["date"]
2022-04-30 13:28:01 +00:00
else:
2024-05-12 15:41:55 +00:00
start = data.iloc[-1]["date"]
start_ms = int(start.timestamp() * 1000) if start else None
2022-04-30 13:28:01 +00:00
end_ms = int(end.timestamp() * 1000) if end else None
return data, start_ms, end_ms
2024-05-12 15:41:55 +00:00
def _download_pair_history(
pair: str,
*,
datadir: Path,
exchange: Exchange,
timeframe: str = "5m",
new_pairs_days: int = 30,
data_handler: IDataHandler | None = None,
timerange: TimeRange | None = None,
2024-05-12 15:41:55 +00:00
candle_type: CandleType,
erase: bool = False,
prepend: bool = False,
) -> bool:
"""
2019-11-13 10:28:26 +00:00
Download latest candles from the exchange for the pair and timeframe passed in parameters
The data is downloaded starting from the last correct data that
exists in a cache. If timerange starts earlier than the data in the cache,
the full data will be redownloaded
:param pair: pair to download
:param timeframe: Timeframe (e.g "5m")
:param timerange: range of time to download
2021-12-03 11:23:35 +00:00
:param candle_type: Any of the enum CandleType (must match trading mode!)
2022-04-10 07:46:23 +00:00
:param erase: Erase existing data
2018-12-16 13:14:17 +00:00
:return: bool with success state
"""
2019-12-27 12:46:25 +00:00
data_handler = get_datahandler(datadir, data_handler=data_handler)
2019-12-25 15:12:20 +00:00
2018-12-16 09:29:53 +00:00
try:
2022-04-10 07:46:23 +00:00
if erase:
if data_handler.ohlcv_purge(pair, timeframe, candle_type=candle_type):
2024-05-12 15:41:55 +00:00
logger.info(f"Deleting existing data for pair {pair}, {timeframe}, {candle_type}.")
2022-04-10 07:46:23 +00:00
2022-04-30 13:28:01 +00:00
data, since_ms, until_ms = _load_cached_data_for_updating(
2024-05-12 15:41:55 +00:00
pair,
timeframe,
timerange,
2022-04-30 13:28:01 +00:00
data_handler=data_handler,
candle_type=candle_type,
2024-05-12 15:41:55 +00:00
prepend=prepend,
)
2022-04-30 15:24:57 +00:00
2024-05-12 15:41:55 +00:00
logger.info(
f'Download history data for "{pair}", {timeframe}, '
2024-05-13 17:49:15 +00:00
f"{candle_type} and store in {datadir}. "
2024-05-12 15:41:55 +00:00
f'From {format_ms_time(since_ms) if since_ms else "start"} to '
f'{format_ms_time(until_ms) if until_ms else "now"}'
)
2024-05-12 15:41:55 +00:00
logger.debug(
"Current Start: %s",
f"{data.iloc[0]['date']:{DATETIME_PRINT_FORMAT}}" if not data.empty else "None",
)
logger.debug(
"Current End: %s",
f"{data.iloc[-1]['date']:{DATETIME_PRINT_FORMAT}}" if not data.empty else "None",
)
2018-12-16 09:29:53 +00:00
# Default since_ms to 30 days if nothing is given
new_dataframe = exchange.get_historic_ohlcv(
2024-05-12 15:41:55 +00:00
pair=pair,
timeframe=timeframe,
2024-05-13 17:49:15 +00:00
since_ms=(
since_ms
if since_ms
else int((datetime.now() - timedelta(days=new_pairs_days)).timestamp()) * 1000
),
2024-05-12 15:41:55 +00:00
is_new_pair=data.empty,
candle_type=candle_type,
until_ms=until_ms if until_ms else None,
)
if data.empty:
data = new_dataframe
else:
2020-07-25 15:06:58 +00:00
# Run cleaning again to ensure there were no duplicate candles
# Especially between existing and new data.
2024-05-12 15:41:55 +00:00
data = clean_ohlcv_dataframe(
concat([data, new_dataframe], axis=0),
timeframe,
pair,
fill_missing=False,
drop_incomplete=False,
)
2024-05-12 15:41:55 +00:00
logger.debug(
"New Start: %s",
f"{data.iloc[0]['date']:{DATETIME_PRINT_FORMAT}}" if not data.empty else "None",
)
logger.debug(
"New End: %s",
f"{data.iloc[-1]['date']:{DATETIME_PRINT_FORMAT}}" if not data.empty else "None",
)
2024-02-09 12:12:22 +00:00
data_handler.ohlcv_store(pair, timeframe, data=data, candle_type=candle_type)
2018-12-16 09:29:53 +00:00
return True
2019-05-17 16:05:36 +00:00
except Exception:
logger.exception(
f'Failed to download history data for pair: "{pair}", timeframe: {timeframe}.'
2019-05-17 16:05:36 +00:00
)
2019-01-31 05:51:03 +00:00
return False
2024-05-12 15:41:55 +00:00
def refresh_backtest_ohlcv_data(
exchange: Exchange,
pairs: list[str],
timeframes: list[str],
2024-05-12 15:41:55 +00:00
datadir: Path,
trading_mode: str,
timerange: TimeRange | None = None,
2024-05-12 15:41:55 +00:00
new_pairs_days: int = 30,
erase: bool = False,
data_format: str | None = None,
2024-05-12 15:41:55 +00:00
prepend: bool = False,
) -> list[str]:
"""
Refresh stored ohlcv data for backtesting and hyperopt operations.
2019-12-16 18:43:33 +00:00
Used by freqtrade download-data subcommand.
:return: List of pairs that are not available.
"""
pairs_not_available = []
2019-12-25 15:12:20 +00:00
data_handler = get_datahandler(datadir, data_format)
2021-12-08 13:10:08 +00:00
candle_type = CandleType.get_default(trading_mode)
with get_progress_tracker() as progress:
tf_length = len(timeframes) if trading_mode != "futures" else len(timeframes) + 2
timeframe_task = progress.add_task("Timeframe", total=tf_length)
pair_task = progress.add_task("Downloading data...", total=len(pairs))
for pair in pairs:
progress.update(pair_task, description=f"Downloading {pair}")
progress.update(timeframe_task, completed=0)
if pair not in exchange.markets:
pairs_not_available.append(pair)
logger.info(f"Skipping pair {pair}...")
continue
for timeframe in timeframes:
progress.update(timeframe_task, description=f"Timeframe {timeframe}")
logger.debug(f"Downloading pair {pair}, {candle_type}, interval {timeframe}.")
2024-05-12 15:41:55 +00:00
_download_pair_history(
pair=pair,
datadir=datadir,
exchange=exchange,
timerange=timerange,
data_handler=data_handler,
timeframe=str(timeframe),
2024-05-12 15:41:55 +00:00
new_pairs_days=new_pairs_days,
candle_type=candle_type,
2024-05-12 15:41:55 +00:00
erase=erase,
prepend=prepend,
)
progress.update(timeframe_task, advance=1)
if trading_mode == "futures":
# Predefined candletype (and timeframe) depending on exchange
# Downloads what is necessary to backtest based on futures data.
tf_mark = exchange.get_option("mark_ohlcv_timeframe")
tf_funding_rate = exchange.get_option("funding_fee_timeframe")
fr_candle_type = CandleType.from_string(exchange.get_option("mark_ohlcv_price"))
# All exchanges need FundingRate for futures trading.
# The timeframe is aligned to the mark-price timeframe.
combs = ((CandleType.FUNDING_RATE, tf_funding_rate), (fr_candle_type, tf_mark))
for candle_type_f, tf in combs:
logger.debug(f"Downloading pair {pair}, {candle_type_f}, interval {tf}.")
_download_pair_history(
pair=pair,
datadir=datadir,
exchange=exchange,
timerange=timerange,
data_handler=data_handler,
timeframe=str(tf),
new_pairs_days=new_pairs_days,
candle_type=candle_type_f,
erase=erase,
prepend=prepend,
)
progress.update(
timeframe_task, advance=1, description=f"Timeframe {candle_type_f}, {tf}"
)
progress.update(pair_task, advance=1)
progress.update(timeframe_task, description="Timeframe")
return pairs_not_available
2024-05-12 15:41:55 +00:00
def _download_trades_history(
exchange: Exchange,
pair: str,
*,
new_pairs_days: int = 30,
timerange: TimeRange | None = None,
2024-05-12 15:41:55 +00:00
data_handler: IDataHandler,
trading_mode: TradingMode,
) -> bool:
2019-08-25 12:30:09 +00:00
"""
Download trade history from the exchange.
Appends to previously downloaded trades data.
"""
2019-08-16 08:51:04 +00:00
try:
until = None
since = 0
2022-04-30 15:44:57 +00:00
if timerange:
2024-05-12 15:41:55 +00:00
if timerange.starttype == "date":
2022-04-30 15:44:57 +00:00
since = timerange.startts * 1000
2024-05-12 15:41:55 +00:00
if timerange.stoptype == "date":
2021-05-15 11:20:36 +00:00
until = timerange.stopts * 1000
2019-08-16 08:51:04 +00:00
trades = data_handler.trades_load(pair, trading_mode)
2019-08-16 08:51:04 +00:00
# TradesList columns are defined in constants.DEFAULT_TRADES_COLUMNS
# DEFAULT_TRADES_COLUMNS: 0 -> timestamp
# DEFAULT_TRADES_COLUMNS: 1 -> id
2020-03-31 18:46:42 +00:00
2024-05-12 15:41:55 +00:00
if not trades.empty and since > 0 and since < trades.iloc[0]["timestamp"]:
# since is before the first trade
2024-05-12 15:41:55 +00:00
logger.info(
f"Start ({trades.iloc[0]['date']:{DATETIME_PRINT_FORMAT}}) earlier than "
f"available data. Redownloading trades for {pair}..."
)
trades = trades_list_to_df([])
2024-05-12 15:41:55 +00:00
from_id = trades.iloc[-1]["id"] if not trades.empty else None
if not trades.empty and since < trades.iloc[-1]["timestamp"]:
2020-03-31 18:46:42 +00:00
# Reset since to the last available point
2020-04-01 18:04:36 +00:00
# - 5 seconds (to ensure we're getting all trades)
2024-05-12 15:41:55 +00:00
since = trades.iloc[-1]["timestamp"] - (5 * 1000)
logger.info(
f"Using last trade date -5s - Downloading trades for {pair} "
f"since: {format_ms_time(since)}."
)
2019-08-16 08:51:04 +00:00
if not since:
since = dt_ts(dt_now() - timedelta(days=new_pairs_days))
2024-05-12 15:41:55 +00:00
logger.debug(
"Current Start: %s",
"None" if trades.empty else f"{trades.iloc[0]['date']:{DATETIME_PRINT_FORMAT}}",
)
logger.debug(
"Current End: %s",
"None" if trades.empty else f"{trades.iloc[-1]['date']:{DATETIME_PRINT_FORMAT}}",
)
logger.info(f"Current Amount of trades: {len(trades)}")
2019-08-16 08:51:04 +00:00
2019-12-16 19:12:26 +00:00
# Default since_ms to 30 days if nothing is given
2024-05-12 15:41:55 +00:00
new_trades = exchange.get_historic_trades(
pair=pair,
since=since,
until=until,
from_id=from_id,
)
new_trades_df = trades_list_to_df(new_trades[1])
trades = concat([trades, new_trades_df], axis=0)
2020-04-01 05:58:39 +00:00
# Remove duplicates to make sure we're not storing data we don't need
trades = trades_df_remove_duplicates(trades)
data_handler.trades_store(pair, trades, trading_mode)
2019-08-16 08:51:04 +00:00
2024-05-12 15:41:55 +00:00
logger.debug(
"New Start: %s",
"None" if trades.empty else f"{trades.iloc[0]['date']:{DATETIME_PRINT_FORMAT}}",
)
logger.debug(
"New End: %s",
"None" if trades.empty else f"{trades.iloc[-1]['date']:{DATETIME_PRINT_FORMAT}}",
)
2019-08-16 08:51:04 +00:00
logger.info(f"New Amount of trades: {len(trades)}")
return True
2019-08-16 08:51:04 +00:00
except Exception:
2024-05-15 15:09:32 +00:00
logger.exception(f'Failed to download and store historic trades for pair: "{pair}". ')
2019-08-16 08:51:04 +00:00
return False
2024-05-12 15:41:55 +00:00
def refresh_backtest_trades_data(
exchange: Exchange,
pairs: list[str],
2024-05-12 15:41:55 +00:00
datadir: Path,
timerange: TimeRange,
trading_mode: TradingMode,
new_pairs_days: int = 30,
erase: bool = False,
data_format: str = "feather",
) -> list[str]:
2019-08-27 05:13:50 +00:00
"""
2019-12-16 18:43:33 +00:00
Refresh stored trades data for backtesting and hyperopt operations.
Used by freqtrade download-data subcommand.
:return: List of pairs that are not available.
2019-08-27 05:13:50 +00:00
"""
pairs_not_available = []
2019-12-25 15:34:27 +00:00
data_handler = get_datahandler(datadir, data_format=data_format)
with get_progress_tracker() as progress:
pair_task = progress.add_task("Downloading data...", total=len(pairs))
for pair in pairs:
progress.update(pair_task, description=f"Downloading trades [{pair}]")
if pair not in exchange.markets:
pairs_not_available.append(pair)
logger.info(f"Skipping pair {pair}...")
continue
2019-08-27 05:13:50 +00:00
if erase:
if data_handler.trades_purge(pair, trading_mode):
logger.info(f"Deleting existing data for pair {pair}.")
logger.info(f"Downloading trades for pair {pair}.")
_download_trades_history(
exchange=exchange,
pair=pair,
new_pairs_days=new_pairs_days,
timerange=timerange,
data_handler=data_handler,
trading_mode=trading_mode,
)
progress.update(pair_task, advance=1)
2024-05-12 15:41:55 +00:00
2019-08-27 05:13:50 +00:00
return pairs_not_available
def get_timerange(data: dict[str, DataFrame]) -> tuple[datetime, datetime]:
"""
2019-12-17 22:06:03 +00:00
Get the maximum common timerange for the given backtest data.
:param data: dictionary with preprocessed backtesting data
:return: tuple containing min_date, max_date
"""
2019-12-17 22:06:03 +00:00
timeranges = [
2024-05-12 15:41:55 +00:00
(frame["date"].min().to_pydatetime(), frame["date"].max().to_pydatetime())
for frame in data.values()
]
2024-05-12 15:41:55 +00:00
return (
min(timeranges, key=operator.itemgetter(0))[0],
max(timeranges, key=operator.itemgetter(1))[1],
)
2024-05-12 15:41:55 +00:00
def validate_backtest_data(
data: DataFrame, pair: str, min_date: datetime, max_date: datetime, timeframe_min: int
) -> bool:
"""
Validates preprocessed backtesting data for missing values and shows warnings about it that.
:param data: preprocessed backtesting data (as DataFrame)
:param pair: pair used for log output.
:param min_date: start-date of the data
:param max_date: end-date of the data
:param timeframe_min: Timeframe in minutes
"""
# total difference in minutes / timeframe-minutes
2024-02-09 12:12:22 +00:00
expected_frames = int((max_date - min_date).total_seconds() // 60 // timeframe_min)
found_missing = False
dflen = len(data)
if dflen < expected_frames:
found_missing = True
2024-05-12 15:41:55 +00:00
logger.warning(
"%s has missing frames: expected %s, got %s, that's %s missing values",
pair,
expected_frames,
dflen,
expected_frames - dflen,
)
return found_missing
def download_data_main(config: Config) -> None:
timerange = TimeRange()
2024-05-12 15:41:55 +00:00
if "days" in config:
time_since = (datetime.now() - timedelta(days=config["days"])).strftime("%Y%m%d")
timerange = TimeRange.parse_timerange(f"{time_since}-")
2024-05-12 15:41:55 +00:00
if "timerange" in config:
2024-10-24 04:05:52 +00:00
timerange = TimeRange.parse_timerange(config["timerange"])
# Remove stake-currency to skip checks which are not relevant for datadownload
2024-05-12 15:41:55 +00:00
config["stake_currency"] = ""
pairs_not_available: list[str] = []
# Init exchange
from freqtrade.resolvers.exchange_resolver import ExchangeResolver
2024-05-12 15:41:55 +00:00
exchange = ExchangeResolver.load_exchange(config, validate=False)
available_pairs = [
2024-05-12 15:41:55 +00:00
p
for p in exchange.get_markets(
tradable_only=True, active_only=not config.get("include_inactive")
).keys()
]
2023-06-17 16:03:57 +00:00
expanded_pairs = dynamic_expand_pairlist(config, available_pairs)
2024-05-12 15:41:55 +00:00
if "timeframes" not in config:
config["timeframes"] = DL_DATA_TIMEFRAMES
2024-05-12 15:41:55 +00:00
logger.info(
f"About to download pairs: {expanded_pairs}, "
f"intervals: {config['timeframes']} to {config['datadir']}"
)
if len(expanded_pairs) == 0:
logger.warning(
"No pairs available for download. "
"Please make sure you're using the correct Pair naming for your selected trade mode. \n"
2024-05-12 15:41:55 +00:00
f"More info: {DOCS_LINK}/bot-basics/#pair-naming"
)
2024-05-12 15:41:55 +00:00
for timeframe in config["timeframes"]:
exchange.validate_timeframes(timeframe)
# Start downloading
try:
2024-05-12 15:41:55 +00:00
if config.get("download_trades"):
if not exchange.get_option("trades_has_history", True):
raise OperationalException(
f"Trade history not available for {exchange.name}. "
"You cannot use --dl-trades for this exchange."
)
pairs_not_available = refresh_backtest_trades_data(
2024-05-12 15:41:55 +00:00
exchange,
pairs=expanded_pairs,
datadir=config["datadir"],
timerange=timerange,
new_pairs_days=config["new_pairs_days"],
erase=bool(config.get("erase")),
data_format=config["dataformat_trades"],
trading_mode=config.get("trading_mode", TradingMode.SPOT),
)
2024-05-18 18:20:58 +00:00
if config.get("convert_trades") or not exchange.get_option("ohlcv_has_history", True):
# Convert downloaded trade data to different timeframes
# Only auto-convert for exchanges without historic klines
convert_trades_to_ohlcv(
pairs=expanded_pairs,
timeframes=config["timeframes"],
datadir=config["datadir"],
timerange=timerange,
erase=bool(config.get("erase")),
data_format_ohlcv=config["dataformat_ohlcv"],
data_format_trades=config["dataformat_trades"],
candle_type=config.get("candle_type_def", CandleType.SPOT),
)
else:
2024-05-12 15:41:55 +00:00
if not exchange.get_option("ohlcv_has_history", True):
raise OperationalException(
f"Historic klines not available for {exchange.name}. "
"Please use `--dl-trades` instead for this exchange "
"(will unfortunately take a long time)."
2024-05-12 15:41:55 +00:00
)
migrate_data(config, exchange)
pairs_not_available = refresh_backtest_ohlcv_data(
2024-05-12 15:41:55 +00:00
exchange,
pairs=expanded_pairs,
timeframes=config["timeframes"],
datadir=config["datadir"],
timerange=timerange,
new_pairs_days=config["new_pairs_days"],
erase=bool(config.get("erase")),
data_format=config["dataformat_ohlcv"],
trading_mode=config.get("trading_mode", "spot"),
prepend=config.get("prepend_data", False),
)
finally:
if pairs_not_available:
2024-05-12 15:41:55 +00:00
logger.info(
f"Pairs [{','.join(pairs_not_available)}] not available "
f"on exchange {exchange.name}."
)