freqtrade_origin/freqtrade/templates/sample_strategy.py

427 lines
17 KiB
Python
Raw Permalink Normal View History

2019-11-21 05:49:16 +00:00
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
# flake8: noqa: F401
2020-09-28 17:39:41 +00:00
# isort: skip_file
2024-08-18 06:38:59 +00:00
# --- Do not remove these imports ---
import numpy as np
import pandas as pd
2024-08-18 06:38:59 +00:00
from datetime import datetime, timedelta, timezone
2018-01-15 08:35:11 +00:00
from pandas import DataFrame
from typing import Optional, Union
2018-01-15 08:35:11 +00:00
2024-05-12 14:43:43 +00:00
from freqtrade.strategy import (
IStrategy,
Trade,
Order,
PairLocks,
informative, # @informative decorator
# Hyperopt Parameters
2024-05-12 14:43:43 +00:00
BooleanParameter,
CategoricalParameter,
DecimalParameter,
IntParameter,
RealParameter,
2024-08-18 06:38:59 +00:00
# timeframe helpers
timeframe_to_minutes,
timeframe_to_next_date,
timeframe_to_prev_date,
# Strategy helper functions
merge_informative_pair,
stoploss_from_absolute,
stoploss_from_open,
2024-05-12 14:43:43 +00:00
)
2019-11-21 05:49:16 +00:00
# --------------------------------
2018-01-15 08:35:11 +00:00
# Add your lib to import here
import talib.abstract as ta
from technical import qtpylib
2018-01-15 08:35:11 +00:00
2018-01-18 07:06:37 +00:00
# This class is a sample. Feel free to customize it.
2019-08-27 04:41:07 +00:00
class SampleStrategy(IStrategy):
2018-01-15 08:35:11 +00:00
"""
2019-08-28 04:07:18 +00:00
This is a sample strategy to inspire you.
2021-02-06 14:43:50 +00:00
More information in https://www.freqtrade.io/en/latest/strategy-customization/
2018-01-18 07:06:37 +00:00
2018-01-15 08:35:11 +00:00
You can:
2018-07-25 06:54:01 +00:00
:return: a Dataframe with all mandatory indicators for the strategies
2018-01-15 08:35:11 +00:00
- Rename the class name (Do not forget to update class_name)
- Add any methods you want to build your strategy
- Add any lib you need to build your strategy
You must keep:
- the lib in the section "Do not remove these libs"
- the methods: populate_indicators, populate_entry_trend, populate_exit_trend
2021-03-28 18:06:30 +00:00
You should keep:
- timeframe, minimal_roi, stoploss, trailing_*
2018-01-15 08:35:11 +00:00
"""
2024-05-12 14:43:43 +00:00
# Strategy interface version - allow new iterations of the strategy interface.
2019-08-26 17:44:33 +00:00
# Check the documentation or the Sample strategy to get the latest version.
2022-03-05 13:26:18 +00:00
INTERFACE_VERSION = 3
2018-01-15 08:35:11 +00:00
2022-03-12 06:00:57 +00:00
# Can this strategy go short?
can_short: bool = False
2018-01-15 08:35:11 +00:00
# Minimal ROI designed for the strategy.
# This attribute will be overridden if the config file contains "minimal_roi".
2018-01-15 08:35:11 +00:00
minimal_roi = {
2024-05-12 14:43:43 +00:00
# "120": 0.0, # exit after 120 minutes at break even
"60": 0.01,
"30": 0.02,
2024-05-12 15:46:00 +00:00
"0": 0.04,
2018-01-15 08:35:11 +00:00
}
# Optimal stoploss designed for the strategy.
# This attribute will be overridden if the config file contains "stoploss".
2018-01-15 08:35:11 +00:00
stoploss = -0.10
# Trailing stoploss
trailing_stop = False
# trailing_only_offset_is_reached = False
# trailing_stop_positive = 0.01
# trailing_stop_positive_offset = 0.0 # Disabled / not configured
# Optimal timeframe for the strategy.
2024-05-12 14:43:43 +00:00
timeframe = "5m"
# Run "populate_indicators()" only for new candle.
process_only_new_candles = True
2018-08-09 17:24:00 +00:00
# These values can be overridden in the config.
2022-04-05 18:07:58 +00:00
use_exit_signal = True
exit_profit_only = False
ignore_roi_if_entry_signal = False
2022-03-12 06:00:57 +00:00
# Hyperoptable parameters
2024-05-12 14:43:43 +00:00
buy_rsi = IntParameter(low=1, high=50, default=30, space="buy", optimize=True, load=True)
sell_rsi = IntParameter(low=50, high=100, default=70, space="sell", optimize=True, load=True)
short_rsi = IntParameter(low=51, high=100, default=70, space="sell", optimize=True, load=True)
exit_short_rsi = IntParameter(low=1, high=50, default=30, space="buy", optimize=True, load=True)
2022-03-12 06:00:57 +00:00
# Number of candles the strategy requires before producing valid signals
2023-09-23 10:23:03 +00:00
startup_candle_count: int = 200
# Optional order type mapping.
2018-11-17 09:26:15 +00:00
order_types = {
2024-05-12 14:43:43 +00:00
"entry": "limit",
"exit": "limit",
"stoploss": "market",
"stoploss_on_exchange": False,
2018-11-17 09:26:15 +00:00
}
# Optional order time in force.
2024-05-12 14:43:43 +00:00
order_time_in_force = {"entry": "GTC", "exit": "GTC"}
2018-11-25 21:02:59 +00:00
2020-01-08 18:35:00 +00:00
plot_config = {
2024-05-12 14:43:43 +00:00
"main_plot": {
"tema": {},
"sar": {"color": "white"},
2020-01-08 18:35:00 +00:00
},
2024-05-12 14:43:43 +00:00
"subplots": {
2020-01-08 18:35:00 +00:00
"MACD": {
2024-05-12 14:43:43 +00:00
"macd": {"color": "blue"},
"macdsignal": {"color": "orange"},
2020-01-08 18:35:00 +00:00
},
"RSI": {
2024-05-12 14:43:43 +00:00
"rsi": {"color": "red"},
},
},
2020-01-08 18:35:00 +00:00
}
def informative_pairs(self):
2019-01-21 19:22:27 +00:00
"""
Define additional, informative pair/interval combinations to be cached from the exchange.
2019-01-21 19:22:27 +00:00
These pair/interval combinations are non-tradeable, unless they are part
of the whitelist as well.
For more information, please consult the documentation
:return: List of tuples in the format (pair, interval)
Sample: return [("ETH/USDT", "5m"),
("BTC/USDT", "15m"),
]
"""
return []
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
2018-01-15 08:35:11 +00:00
"""
Adds several different TA indicators to the given DataFrame
Performance Note: For the best performance be frugal on the number of indicators
you are using. Let uncomment only the indicator you are using in your strategies
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
:param dataframe: Dataframe with data from the exchange
:param metadata: Additional information, like the currently traded pair
2018-07-25 06:54:01 +00:00
:return: a Dataframe with all mandatory indicators for the strategies
2018-01-15 08:35:11 +00:00
"""
2019-10-15 18:11:41 +00:00
# Momentum Indicators
2018-01-18 07:06:37 +00:00
# ------------------------------------
2019-10-15 18:11:41 +00:00
# ADX
2024-05-12 14:43:43 +00:00
dataframe["adx"] = ta.ADX(dataframe)
2020-02-23 15:22:19 +00:00
# # Plus Directional Indicator / Movement
# dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
# dataframe['plus_di'] = ta.PLUS_DI(dataframe)
# # Minus Directional Indicator / Movement
# dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
# dataframe['minus_di'] = ta.MINUS_DI(dataframe)
2019-11-21 05:40:30 +00:00
# # Aroon, Aroon Oscillator
# aroon = ta.AROON(dataframe)
# dataframe['aroonup'] = aroon['aroonup']
# dataframe['aroondown'] = aroon['aroondown']
# dataframe['aroonosc'] = ta.AROONOSC(dataframe)
2020-02-23 15:22:19 +00:00
# # Awesome Oscillator
2019-11-21 05:40:30 +00:00
# dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
2020-02-23 15:22:19 +00:00
# # Keltner Channel
# keltner = qtpylib.keltner_channel(dataframe)
# dataframe["kc_upperband"] = keltner["upper"]
# dataframe["kc_lowerband"] = keltner["lower"]
# dataframe["kc_middleband"] = keltner["mid"]
# dataframe["kc_percent"] = (
# (dataframe["close"] - dataframe["kc_lowerband"]) /
# (dataframe["kc_upperband"] - dataframe["kc_lowerband"])
# )
# dataframe["kc_width"] = (
# (dataframe["kc_upperband"] - dataframe["kc_lowerband"]) / dataframe["kc_middleband"]
# )
# # Ultimate Oscillator
# dataframe['uo'] = ta.ULTOSC(dataframe)
# # Commodity Channel Index: values [Oversold:-100, Overbought:100]
2019-11-21 05:40:30 +00:00
# dataframe['cci'] = ta.CCI(dataframe)
2018-01-18 07:06:37 +00:00
2020-02-23 15:22:19 +00:00
# RSI
2024-05-12 14:43:43 +00:00
dataframe["rsi"] = ta.RSI(dataframe)
2018-01-18 07:06:37 +00:00
2022-07-11 09:48:24 +00:00
# # Inverse Fisher transform on RSI: values [-1.0, 1.0] (https://goo.gl/2JGGoy)
# rsi = 0.1 * (dataframe['rsi'] - 50)
# dataframe['fisher_rsi'] = (np.exp(2 * rsi) - 1) / (np.exp(2 * rsi) + 1)
# # Inverse Fisher transform on RSI normalized: values [0.0, 100.0] (https://goo.gl/2JGGoy)
# dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
# # Stochastic Slow
# stoch = ta.STOCH(dataframe)
# dataframe['slowd'] = stoch['slowd']
# dataframe['slowk'] = stoch['slowk']
# Stochastic Fast
stoch_fast = ta.STOCHF(dataframe)
2024-05-12 14:43:43 +00:00
dataframe["fastd"] = stoch_fast["fastd"]
dataframe["fastk"] = stoch_fast["fastk"]
2022-07-11 09:48:24 +00:00
# # Stochastic RSI
# Please read https://github.com/freqtrade/freqtrade/issues/2961 before using this.
# STOCHRSI is NOT aligned with tradingview, which may result in non-expected results.
# stoch_rsi = ta.STOCHRSI(dataframe)
# dataframe['fastd_rsi'] = stoch_rsi['fastd']
# dataframe['fastk_rsi'] = stoch_rsi['fastk']
2018-01-18 07:06:37 +00:00
2020-02-23 15:22:19 +00:00
# MACD
macd = ta.MACD(dataframe)
2024-05-12 14:43:43 +00:00
dataframe["macd"] = macd["macd"]
dataframe["macdsignal"] = macd["macdsignal"]
dataframe["macdhist"] = macd["macdhist"]
2020-02-23 15:22:19 +00:00
# MFI
2024-05-12 14:43:43 +00:00
dataframe["mfi"] = ta.MFI(dataframe)
2020-02-23 15:22:19 +00:00
# # ROC
# dataframe['roc'] = ta.ROC(dataframe)
2018-01-18 07:06:37 +00:00
# Overlap Studies
# ------------------------------------
2020-02-23 15:22:19 +00:00
# Bollinger Bands
2018-01-18 07:06:37 +00:00
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
2024-05-12 14:43:43 +00:00
dataframe["bb_lowerband"] = bollinger["lower"]
dataframe["bb_middleband"] = bollinger["mid"]
dataframe["bb_upperband"] = bollinger["upper"]
dataframe["bb_percent"] = (dataframe["close"] - dataframe["bb_lowerband"]) / (
dataframe["bb_upperband"] - dataframe["bb_lowerband"]
2020-02-23 15:22:19 +00:00
)
2024-05-12 14:43:43 +00:00
dataframe["bb_width"] = (dataframe["bb_upperband"] - dataframe["bb_lowerband"]) / dataframe[
"bb_middleband"
]
2020-02-23 15:22:19 +00:00
# Bollinger Bands - Weighted (EMA based instead of SMA)
# weighted_bollinger = qtpylib.weighted_bollinger_bands(
# qtpylib.typical_price(dataframe), window=20, stds=2
# )
# dataframe["wbb_upperband"] = weighted_bollinger["upper"]
# dataframe["wbb_lowerband"] = weighted_bollinger["lower"]
# dataframe["wbb_middleband"] = weighted_bollinger["mid"]
# dataframe["wbb_percent"] = (
# (dataframe["close"] - dataframe["wbb_lowerband"]) /
# (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"])
# )
# dataframe["wbb_width"] = (
# (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"]) /
# dataframe["wbb_middleband"]
# )
2018-01-18 07:06:37 +00:00
2019-11-21 05:40:30 +00:00
# # EMA - Exponential Moving Average
# dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
# dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
# dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
2020-02-23 15:22:19 +00:00
# dataframe['ema21'] = ta.EMA(dataframe, timeperiod=21)
2019-11-21 05:40:30 +00:00
# dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
# dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
# # SMA - Simple Moving Average
2020-02-23 15:22:19 +00:00
# dataframe['sma3'] = ta.SMA(dataframe, timeperiod=3)
# dataframe['sma5'] = ta.SMA(dataframe, timeperiod=5)
# dataframe['sma10'] = ta.SMA(dataframe, timeperiod=10)
# dataframe['sma21'] = ta.SMA(dataframe, timeperiod=21)
# dataframe['sma50'] = ta.SMA(dataframe, timeperiod=50)
# dataframe['sma100'] = ta.SMA(dataframe, timeperiod=100)
2019-11-21 05:40:30 +00:00
2020-02-23 15:22:19 +00:00
# Parabolic SAR
2024-05-12 14:43:43 +00:00
dataframe["sar"] = ta.SAR(dataframe)
2018-01-18 07:06:37 +00:00
# TEMA - Triple Exponential Moving Average
2024-05-12 14:43:43 +00:00
dataframe["tema"] = ta.TEMA(dataframe, timeperiod=9)
2018-01-15 08:35:11 +00:00
2018-01-18 07:06:37 +00:00
# Cycle Indicator
# ------------------------------------
# Hilbert Transform Indicator - SineWave
hilbert = ta.HT_SINE(dataframe)
2024-05-12 14:43:43 +00:00
dataframe["htsine"] = hilbert["sine"]
dataframe["htleadsine"] = hilbert["leadsine"]
2018-01-18 07:06:37 +00:00
# Pattern Recognition - Bullish candlestick patterns
# ------------------------------------
2019-11-21 05:40:30 +00:00
# # Hammer: values [0, 100]
# dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
# # Inverted Hammer: values [0, 100]
# dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
# # Dragonfly Doji: values [0, 100]
# dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
# # Piercing Line: values [0, 100]
# dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
# # Morningstar: values [0, 100]
# dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
# # Three White Soldiers: values [0, 100]
# dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]
2018-01-18 07:06:37 +00:00
# Pattern Recognition - Bearish candlestick patterns
# ------------------------------------
2019-11-21 05:40:30 +00:00
# # Hanging Man: values [0, 100]
# dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
# # Shooting Star: values [0, 100]
# dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
# # Gravestone Doji: values [0, 100]
# dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
# # Dark Cloud Cover: values [0, 100]
# dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
# # Evening Doji Star: values [0, 100]
# dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
# # Evening Star: values [0, 100]
# dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)
2018-01-18 07:06:37 +00:00
# Pattern Recognition - Bullish/Bearish candlestick patterns
# ------------------------------------
2019-11-21 05:40:30 +00:00
# # Three Line Strike: values [0, -100, 100]
# dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
# # Spinning Top: values [0, -100, 100]
# dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
# # Engulfing: values [0, -100, 100]
# dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
# # Harami: values [0, -100, 100]
# dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
# # Three Outside Up/Down: values [0, -100, 100]
# dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
# # Three Inside Up/Down: values [0, -100, 100]
# dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]
# # Chart type
# # ------------------------------------
2020-02-23 15:22:19 +00:00
# # Heikin Ashi Strategy
2019-11-21 05:40:30 +00:00
# heikinashi = qtpylib.heikinashi(dataframe)
# dataframe['ha_open'] = heikinashi['open']
# dataframe['ha_close'] = heikinashi['close']
# dataframe['ha_high'] = heikinashi['high']
# dataframe['ha_low'] = heikinashi['low']
2018-01-18 07:06:37 +00:00
2019-10-15 18:11:41 +00:00
# Retrieve best bid and best ask from the orderbook
# ------------------------------------
"""
2019-08-26 17:44:33 +00:00
# first check if dataprovider is available
2019-06-06 15:25:58 +00:00
if self.dp:
if self.dp.runmode.value in ('live', 'dry_run'):
ob = self.dp.orderbook(metadata['pair'], 1)
dataframe['best_bid'] = ob['bids'][0][0]
dataframe['best_ask'] = ob['asks'][0][0]
"""
2019-08-26 17:44:33 +00:00
2018-01-15 08:35:11 +00:00
return dataframe
def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
2018-01-15 08:35:11 +00:00
"""
Based on TA indicators, populates the entry signal for the given dataframe
:param dataframe: DataFrame
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with entry columns populated
2018-01-15 08:35:11 +00:00
"""
dataframe.loc[
(
# Signal: RSI crosses above 30
2024-05-12 14:43:43 +00:00
(qtpylib.crossed_above(dataframe["rsi"], self.buy_rsi.value))
& (dataframe["tema"] <= dataframe["bb_middleband"]) # Guard: tema below BB middle
& (dataframe["tema"] > dataframe["tema"].shift(1)) # Guard: tema is raising
& (dataframe["volume"] > 0) # Make sure Volume is not 0
2018-01-15 08:35:11 +00:00
),
2024-05-12 14:43:43 +00:00
"enter_long",
] = 1
2018-01-15 08:35:11 +00:00
2021-09-08 06:24:32 +00:00
dataframe.loc[
(
# Signal: RSI crosses above 70
2024-05-12 14:43:43 +00:00
(qtpylib.crossed_above(dataframe["rsi"], self.short_rsi.value))
& (dataframe["tema"] > dataframe["bb_middleband"]) # Guard: tema above BB middle
& (dataframe["tema"] < dataframe["tema"].shift(1)) # Guard: tema is falling
& (dataframe["volume"] > 0) # Make sure Volume is not 0
2021-09-08 06:24:32 +00:00
),
2024-05-12 14:43:43 +00:00
"enter_short",
] = 1
2021-09-08 06:24:32 +00:00
2018-01-15 08:35:11 +00:00
return dataframe
def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
2018-01-15 08:35:11 +00:00
"""
Based on TA indicators, populates the exit signal for the given dataframe
:param dataframe: DataFrame
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with exit columns populated
2018-01-15 08:35:11 +00:00
"""
dataframe.loc[
(
# Signal: RSI crosses above 70
2024-05-12 14:43:43 +00:00
(qtpylib.crossed_above(dataframe["rsi"], self.sell_rsi.value))
& (dataframe["tema"] > dataframe["bb_middleband"]) # Guard: tema above BB middle
& (dataframe["tema"] < dataframe["tema"].shift(1)) # Guard: tema is falling
& (dataframe["volume"] > 0) # Make sure Volume is not 0
2018-01-15 08:35:11 +00:00
),
2024-05-12 14:43:43 +00:00
"exit_long",
] = 1
2021-09-08 06:24:32 +00:00
dataframe.loc[
(
# Signal: RSI crosses above 30
2024-05-12 14:43:43 +00:00
(qtpylib.crossed_above(dataframe["rsi"], self.exit_short_rsi.value))
&
2021-09-08 06:24:32 +00:00
# Guard: tema below BB middle
2024-05-12 14:43:43 +00:00
(dataframe["tema"] <= dataframe["bb_middleband"])
& (dataframe["tema"] > dataframe["tema"].shift(1)) # Guard: tema is raising
& (dataframe["volume"] > 0) # Make sure Volume is not 0
2021-09-08 06:24:32 +00:00
),
2024-05-12 14:43:43 +00:00
"exit_short",
] = 1
2021-09-08 06:24:32 +00:00
2018-01-15 08:35:11 +00:00
return dataframe