freqtrade_origin/freqtrade/templates/FreqaiExampleHybridStrategy.py

322 lines
12 KiB
Python
Raw Permalink Normal View History

2022-08-19 17:10:37 +00:00
import logging
from typing import Dict
2022-08-19 17:10:37 +00:00
2023-02-22 06:20:10 +00:00
import numpy as np # noqa
import pandas as pd # noqa
2022-08-19 17:10:37 +00:00
import talib.abstract as ta
from pandas import DataFrame
2022-08-28 09:29:48 +00:00
from technical import qtpylib
2022-08-19 17:10:37 +00:00
2023-02-22 06:20:10 +00:00
from freqtrade.strategy import IntParameter, IStrategy, merge_informative_pair # noqa
2022-08-20 17:50:18 +00:00
2022-08-19 17:10:37 +00:00
logger = logging.getLogger(__name__)
class FreqaiExampleHybridStrategy(IStrategy):
"""
Example of a hybrid FreqAI strat, designed to illustrate how a user may employ
FreqAI to bolster a typical Freqtrade strategy.
Launching this strategy would be:
freqtrade trade --strategy FreqaiExampleHybridStrategy --strategy-path freqtrade/templates
--freqaimodel CatboostClassifier --config config_examples/config_freqai.example.json
or the user simply adds this to their config:
"freqai": {
"enabled": true,
"purge_old_models": 2,
"train_period_days": 15,
2024-01-01 16:21:47 +00:00
"identifier": "unique-id",
"feature_parameters": {
"include_timeframes": [
"3m",
"15m",
"1h"
],
"include_corr_pairlist": [
"BTC/USDT",
"ETH/USDT"
],
"label_period_candles": 20,
"include_shifted_candles": 2,
"DI_threshold": 0.9,
"weight_factor": 0.9,
"principal_component_analysis": false,
"use_SVM_to_remove_outliers": true,
"indicator_periods_candles": [10, 20]
},
"data_split_parameters": {
2022-08-28 09:29:48 +00:00
"test_size": 0,
"random_state": 1
},
"model_training_parameters": {
"n_estimators": 800
}
},
2022-08-28 09:29:48 +00:00
Thanks to @smarmau and @johanvulgt for developing and sharing the strategy.
2022-08-19 17:10:37 +00:00
"""
2022-08-28 09:29:48 +00:00
minimal_roi = {
2024-05-12 14:43:43 +00:00
# "120": 0.0, # exit after 120 minutes at break even
2022-08-28 09:29:48 +00:00
"60": 0.01,
"30": 0.02,
2024-05-12 15:46:00 +00:00
"0": 0.04,
2022-08-28 09:29:48 +00:00
}
plot_config = {
2024-05-12 14:43:43 +00:00
"main_plot": {
"tema": {},
2022-08-28 09:29:48 +00:00
},
2024-05-12 14:43:43 +00:00
"subplots": {
2022-08-28 09:29:48 +00:00
"MACD": {
2024-05-12 14:43:43 +00:00
"macd": {"color": "blue"},
"macdsignal": {"color": "orange"},
2022-08-28 09:29:48 +00:00
},
"RSI": {
2024-05-12 14:43:43 +00:00
"rsi": {"color": "red"},
2022-08-28 09:29:48 +00:00
},
"Up_or_down": {
2024-05-12 14:43:43 +00:00
"&s-up_or_down": {"color": "green"},
},
},
2022-08-28 09:29:48 +00:00
}
2022-08-19 17:10:37 +00:00
process_only_new_candles = True
2022-08-28 09:29:48 +00:00
stoploss = -0.05
2022-08-19 17:10:37 +00:00
use_exit_signal = True
startup_candle_count: int = 30
2022-08-19 17:10:37 +00:00
can_short = True
2022-08-28 09:29:48 +00:00
# Hyperoptable parameters
2024-05-12 14:43:43 +00:00
buy_rsi = IntParameter(low=1, high=50, default=30, space="buy", optimize=True, load=True)
sell_rsi = IntParameter(low=50, high=100, default=70, space="sell", optimize=True, load=True)
short_rsi = IntParameter(low=51, high=100, default=70, space="sell", optimize=True, load=True)
exit_short_rsi = IntParameter(low=1, high=50, default=30, space="buy", optimize=True, load=True)
def feature_engineering_expand_all(
self, dataframe: DataFrame, period: int, metadata: Dict, **kwargs
) -> DataFrame:
2022-08-19 17:10:37 +00:00
"""
*Only functional with FreqAI enabled strategies*
This function will automatically expand the defined features on the config defined
`indicator_periods_candles`, `include_timeframes`, `include_shifted_candles`, and
`include_corr_pairs`. In other words, a single feature defined in this function
will automatically expand to a total of
`indicator_periods_candles` * `include_timeframes` * `include_shifted_candles` *
`include_corr_pairs` numbers of features added to the model.
All features must be prepended with `%` to be recognized by FreqAI internals.
More details on how these config defined parameters accelerate feature engineering
in the documentation at:
https://www.freqtrade.io/en/latest/freqai-parameter-table/#feature-parameters
https://www.freqtrade.io/en/latest/freqai-feature-engineering/#defining-the-features
:param dataframe: strategy dataframe which will receive the features
:param period: period of the indicator - usage example:
:param metadata: metadata of current pair
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
"""
dataframe["%-rsi-period"] = ta.RSI(dataframe, timeperiod=period)
dataframe["%-mfi-period"] = ta.MFI(dataframe, timeperiod=period)
dataframe["%-adx-period"] = ta.ADX(dataframe, timeperiod=period)
dataframe["%-sma-period"] = ta.SMA(dataframe, timeperiod=period)
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
bollinger = qtpylib.bollinger_bands(
qtpylib.typical_price(dataframe), window=period, stds=2.2
)
dataframe["bb_lowerband-period"] = bollinger["lower"]
dataframe["bb_middleband-period"] = bollinger["mid"]
dataframe["bb_upperband-period"] = bollinger["upper"]
dataframe["%-bb_width-period"] = (
2024-05-12 14:43:43 +00:00
dataframe["bb_upperband-period"] - dataframe["bb_lowerband-period"]
) / dataframe["bb_middleband-period"]
2024-05-12 14:43:43 +00:00
dataframe["%-close-bb_lower-period"] = dataframe["close"] / dataframe["bb_lowerband-period"]
dataframe["%-roc-period"] = ta.ROC(dataframe, timeperiod=period)
dataframe["%-relative_volume-period"] = (
dataframe["volume"] / dataframe["volume"].rolling(period).mean()
)
return dataframe
def feature_engineering_expand_basic(
2024-05-12 14:43:43 +00:00
self, dataframe: DataFrame, metadata: Dict, **kwargs
) -> DataFrame:
"""
*Only functional with FreqAI enabled strategies*
This function will automatically expand the defined features on the config defined
`include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`.
In other words, a single feature defined in this function
will automatically expand to a total of
`include_timeframes` * `include_shifted_candles` * `include_corr_pairs`
numbers of features added to the model.
Features defined here will *not* be automatically duplicated on user defined
`indicator_periods_candles`
All features must be prepended with `%` to be recognized by FreqAI internals.
More details on how these config defined parameters accelerate feature engineering
in the documentation at:
https://www.freqtrade.io/en/latest/freqai-parameter-table/#feature-parameters
https://www.freqtrade.io/en/latest/freqai-feature-engineering/#defining-the-features
:param dataframe: strategy dataframe which will receive the features
:param metadata: metadata of current pair
dataframe["%-pct-change"] = dataframe["close"].pct_change()
dataframe["%-ema-200"] = ta.EMA(dataframe, timeperiod=200)
"""
dataframe["%-pct-change"] = dataframe["close"].pct_change()
dataframe["%-raw_volume"] = dataframe["volume"]
dataframe["%-raw_price"] = dataframe["close"]
return dataframe
def feature_engineering_standard(
2024-05-12 14:43:43 +00:00
self, dataframe: DataFrame, metadata: Dict, **kwargs
) -> DataFrame:
"""
*Only functional with FreqAI enabled strategies*
This optional function will be called once with the dataframe of the base timeframe.
This is the final function to be called, which means that the dataframe entering this
function will contain all the features and columns created by all other
freqai_feature_engineering_* functions.
This function is a good place to do custom exotic feature extractions (e.g. tsfresh).
This function is a good place for any feature that should not be auto-expanded upon
(e.g. day of the week).
All features must be prepended with `%` to be recognized by FreqAI internals.
More details about feature engineering available:
https://www.freqtrade.io/en/latest/freqai-feature-engineering
:param dataframe: strategy dataframe which will receive the features
:param metadata: metadata of current pair
usage example: dataframe["%-day_of_week"] = (dataframe["date"].dt.dayofweek + 1) / 7
"""
dataframe["%-day_of_week"] = dataframe["date"].dt.dayofweek
dataframe["%-hour_of_day"] = dataframe["date"].dt.hour
return dataframe
def set_freqai_targets(self, dataframe: DataFrame, metadata: Dict, **kwargs) -> DataFrame:
"""
*Only functional with FreqAI enabled strategies*
Required function to set the targets for the model.
All targets must be prepended with `&` to be recognized by the FreqAI internals.
More details about feature engineering available:
https://www.freqtrade.io/en/latest/freqai-feature-engineering
:param dataframe: strategy dataframe which will receive the targets
:param metadata: metadata of current pair
usage example: dataframe["&-target"] = dataframe["close"].shift(-1) / dataframe["close"]
2022-08-19 17:10:37 +00:00
"""
self.freqai.class_names = ["down", "up"]
2024-05-12 14:43:43 +00:00
dataframe["&s-up_or_down"] = np.where(
dataframe["close"].shift(-50) > dataframe["close"], "up", "down"
)
2022-08-19 17:10:37 +00:00
return dataframe
2022-08-19 17:10:37 +00:00
2023-02-22 06:20:10 +00:00
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame: # noqa: C901
# User creates their own custom strat here. Present example is a supertrend
# based strategy.
2022-08-19 17:10:37 +00:00
dataframe = self.freqai.start(dataframe, metadata, self)
2022-08-28 09:29:48 +00:00
# TA indicators to combine with the Freqai targets
# RSI
2024-05-12 14:43:43 +00:00
dataframe["rsi"] = ta.RSI(dataframe)
2022-08-28 09:29:48 +00:00
# Bollinger Bands
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
2024-05-12 14:43:43 +00:00
dataframe["bb_lowerband"] = bollinger["lower"]
dataframe["bb_middleband"] = bollinger["mid"]
dataframe["bb_upperband"] = bollinger["upper"]
dataframe["bb_percent"] = (dataframe["close"] - dataframe["bb_lowerband"]) / (
dataframe["bb_upperband"] - dataframe["bb_lowerband"]
2022-08-28 09:29:48 +00:00
)
2024-05-12 14:43:43 +00:00
dataframe["bb_width"] = (dataframe["bb_upperband"] - dataframe["bb_lowerband"]) / dataframe[
"bb_middleband"
]
2022-08-28 09:29:48 +00:00
# TEMA - Triple Exponential Moving Average
2024-05-12 14:43:43 +00:00
dataframe["tema"] = ta.TEMA(dataframe, timeperiod=9)
2022-08-28 09:29:48 +00:00
2022-08-19 17:10:37 +00:00
return dataframe
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
df.loc[
2022-08-28 09:29:48 +00:00
(
# Signal: RSI crosses above 30
2024-05-12 14:43:43 +00:00
(qtpylib.crossed_above(df["rsi"], self.buy_rsi.value))
& (df["tema"] <= df["bb_middleband"]) # Guard: tema below BB middle
& (df["tema"] > df["tema"].shift(1)) # Guard: tema is raising
& (df["volume"] > 0) # Make sure Volume is not 0
& (df["do_predict"] == 1) # Make sure Freqai is confident in the prediction
&
2022-08-28 09:29:48 +00:00
# Only enter trade if Freqai thinks the trend is in this direction
2024-05-12 14:43:43 +00:00
(df["&s-up_or_down"] == "up")
2022-08-28 09:29:48 +00:00
),
2024-05-12 14:43:43 +00:00
"enter_long",
] = 1
2022-08-19 17:10:37 +00:00
df.loc[
2022-08-28 09:29:48 +00:00
(
# Signal: RSI crosses above 70
2024-05-12 14:43:43 +00:00
(qtpylib.crossed_above(df["rsi"], self.short_rsi.value))
& (df["tema"] > df["bb_middleband"]) # Guard: tema above BB middle
& (df["tema"] < df["tema"].shift(1)) # Guard: tema is falling
& (df["volume"] > 0) # Make sure Volume is not 0
& (df["do_predict"] == 1) # Make sure Freqai is confident in the prediction
&
2022-08-28 09:29:48 +00:00
# Only enter trade if Freqai thinks the trend is in this direction
2024-05-12 14:43:43 +00:00
(df["&s-up_or_down"] == "down")
2022-08-28 09:29:48 +00:00
),
2024-05-12 14:43:43 +00:00
"enter_short",
] = 1
2022-08-19 17:10:37 +00:00
return df
def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
df.loc[
2022-08-28 09:29:48 +00:00
(
# Signal: RSI crosses above 70
2024-05-12 14:43:43 +00:00
(qtpylib.crossed_above(df["rsi"], self.sell_rsi.value))
& (df["tema"] > df["bb_middleband"]) # Guard: tema above BB middle
& (df["tema"] < df["tema"].shift(1)) # Guard: tema is falling
& (df["volume"] > 0) # Make sure Volume is not 0
2022-08-28 09:29:48 +00:00
),
2024-05-12 14:43:43 +00:00
"exit_long",
] = 1
2022-08-19 17:10:37 +00:00
df.loc[
2022-08-28 09:29:48 +00:00
(
# Signal: RSI crosses above 30
2024-05-12 14:43:43 +00:00
(qtpylib.crossed_above(df["rsi"], self.exit_short_rsi.value))
&
2022-08-28 09:29:48 +00:00
# Guard: tema below BB middle
2024-05-12 14:43:43 +00:00
(df["tema"] <= df["bb_middleband"])
& (df["tema"] > df["tema"].shift(1)) # Guard: tema is raising
& (df["volume"] > 0) # Make sure Volume is not 0
2022-08-28 09:29:48 +00:00
),
2024-05-12 14:43:43 +00:00
"exit_short",
] = 1
2022-08-19 17:10:37 +00:00
return df