freqtrade_origin/freqtrade/rpc/rpc.py

1530 lines
61 KiB
Python
Raw Normal View History

2018-02-13 03:45:59 +00:00
"""
This module contains class to define a RPC communications
"""
2024-05-12 14:51:11 +00:00
2018-03-25 19:37:14 +00:00
import logging
from abc import abstractmethod
from collections.abc import Generator, Sequence
2021-03-01 06:51:33 +00:00
from datetime import date, datetime, timedelta, timezone
2019-11-12 13:58:41 +00:00
from math import isnan
from typing import Any
2018-03-17 21:44:47 +00:00
2021-10-06 17:36:28 +00:00
import psutil
from dateutil.relativedelta import relativedelta
from dateutil.tz import tzlocal
from numpy import inf, int64, mean, nan
2022-02-09 05:48:26 +00:00
from pandas import DataFrame, NaT
from sqlalchemy import func, select
2018-03-17 21:44:47 +00:00
2021-11-06 15:12:25 +00:00
from freqtrade import __version__
2020-07-02 05:10:56 +00:00
from freqtrade.configuration.timerange import TimeRange
from freqtrade.constants import CANCEL_REASON, DEFAULT_DATAFRAME_COLUMNS, Config
2020-07-02 05:10:56 +00:00
from freqtrade.data.history import load_data
2024-05-15 04:57:28 +00:00
from freqtrade.data.metrics import DrawDownResult, calculate_expectancy, calculate_max_drawdown
from freqtrade.enums import (
CandleType,
ExitCheckTuple,
ExitType,
MarketDirection,
SignalDirection,
State,
TradingMode,
)
from freqtrade.exceptions import ExchangeError, PricingError
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_msecs
2024-09-04 04:42:51 +00:00
from freqtrade.exchange.exchange_types import Tickers
from freqtrade.loggers import bufferHandler
2023-06-21 01:52:06 +00:00
from freqtrade.persistence import KeyStoreKeys, KeyValueStore, PairLocks, Trade
2021-03-01 06:51:33 +00:00
from freqtrade.persistence.models import PairLock
from freqtrade.plugins.pairlist.pairlist_helpers import expand_pairlist
from freqtrade.rpc.fiat_convert import CryptoToFiatConverter
from freqtrade.rpc.rpc_types import RPCSendMsg
2024-04-21 13:29:11 +00:00
from freqtrade.util import decimals_per_coin, dt_now, dt_ts_def, format_date, shorten_date
from freqtrade.util.datetime_helpers import dt_humanize_delta
2022-02-19 09:58:17 +00:00
from freqtrade.wallets import PositionWallet, Wallet
2018-02-13 03:45:59 +00:00
2020-09-28 17:39:41 +00:00
2018-03-25 19:37:14 +00:00
logger = logging.getLogger(__name__)
2018-06-08 02:52:50 +00:00
class RPCException(Exception):
"""
Should be raised with a rpc-formatted message in an _rpc_* method
if the required state is wrong, i.e.:
raise RPCException('*Status:* `no active trade`')
"""
2020-02-08 20:02:52 +00:00
def __init__(self, message: str) -> None:
super().__init__(self)
self.message = message
def __str__(self):
return self.message
2019-04-04 05:13:40 +00:00
def __json__(self):
2024-05-12 14:51:11 +00:00
return {"msg": self.message}
2019-04-04 05:13:40 +00:00
2018-06-08 02:52:50 +00:00
class RPCHandler:
2024-05-12 14:51:11 +00:00
def __init__(self, rpc: "RPC", config: Config) -> None:
2018-02-13 03:45:59 +00:00
"""
Initializes RPCHandlers
:param rpc: instance of RPC Helper class
:param config: Configuration object
2018-02-13 03:45:59 +00:00
:return: None
"""
self._rpc = rpc
2022-09-18 11:20:36 +00:00
self._config: Config = config
2018-02-13 03:45:59 +00:00
@property
def name(self) -> str:
2024-05-12 14:51:11 +00:00
"""Returns the lowercase name of the implementation"""
return self.__class__.__name__.lower()
@abstractmethod
2018-06-08 02:52:50 +00:00
def cleanup(self) -> None:
2024-05-12 14:51:11 +00:00
"""Cleanup pending module resources"""
@abstractmethod
def send_msg(self, msg: RPCSendMsg) -> None:
2024-05-12 14:51:11 +00:00
"""Sends a message to all registered rpc modules"""
class RPC:
"""
RPC class can be used to have extra feature, like bot data, and access to DB data
"""
2024-05-12 14:51:11 +00:00
# Bind _fiat_converter if needed
_fiat_converter: CryptoToFiatConverter | None = None
def __init__(self, freqtrade) -> None:
"""
Initializes all enabled rpc modules
:param freqtrade: Instance of a freqtrade bot
:return: None
"""
self._freqtrade = freqtrade
2022-09-18 11:20:36 +00:00
self._config: Config = freqtrade.config
2024-05-12 14:51:11 +00:00
if self._config.get("fiat_display_currency"):
2024-05-20 12:32:08 +00:00
self._fiat_converter = CryptoToFiatConverter(self._config)
@staticmethod
2024-05-12 14:51:11 +00:00
def _rpc_show_config(
config, botstate: State | str, strategy_version: str | None = None
) -> dict[str, Any]:
2019-11-17 13:56:08 +00:00
"""
Return a dict of config options.
Explicitly does NOT return the full config to avoid leakage of sensitive
information via rpc.
"""
val = {
2024-05-12 14:51:11 +00:00
"version": __version__,
"strategy_version": strategy_version,
"dry_run": config["dry_run"],
"trading_mode": config.get("trading_mode", "spot"),
"short_allowed": config.get("trading_mode", "spot") != "spot",
"stake_currency": config["stake_currency"],
"stake_currency_decimals": decimals_per_coin(config["stake_currency"]),
"stake_amount": str(config["stake_amount"]),
"available_capital": config.get("available_capital"),
"max_open_trades": (
config.get("max_open_trades", 0)
if config.get("max_open_trades", 0) != float("inf")
else -1
),
"minimal_roi": config["minimal_roi"].copy() if "minimal_roi" in config else {},
"stoploss": config.get("stoploss"),
"stoploss_on_exchange": config.get("order_types", {}).get(
"stoploss_on_exchange", False
),
"trailing_stop": config.get("trailing_stop"),
"trailing_stop_positive": config.get("trailing_stop_positive"),
"trailing_stop_positive_offset": config.get("trailing_stop_positive_offset"),
"trailing_only_offset_is_reached": config.get("trailing_only_offset_is_reached"),
"unfilledtimeout": config.get("unfilledtimeout"),
"use_custom_stoploss": config.get("use_custom_stoploss"),
"order_types": config.get("order_types"),
"bot_name": config.get("bot_name", "freqtrade"),
"timeframe": config.get("timeframe"),
"timeframe_ms": timeframe_to_msecs(config["timeframe"]) if "timeframe" in config else 0,
2024-05-13 17:49:15 +00:00
"timeframe_min": (
timeframe_to_minutes(config["timeframe"]) if "timeframe" in config else 0
),
2024-05-12 14:51:11 +00:00
"exchange": config["exchange"]["name"],
"strategy": config["strategy"],
"force_entry_enable": config.get("force_entry_enable", False),
"exit_pricing": config.get("exit_pricing", {}),
"entry_pricing": config.get("entry_pricing", {}),
"state": str(botstate),
"runmode": config["runmode"].value,
"position_adjustment_enable": config.get("position_adjustment_enable", False),
"max_entry_position_adjustment": (
config.get("max_entry_position_adjustment", -1)
if config.get("max_entry_position_adjustment") != float("inf")
else -1
),
2019-11-17 13:56:08 +00:00
}
return val
def _rpc_trade_status(self, trade_ids: list[int] | None = None) -> list[dict[str, Any]]:
2018-02-13 03:45:59 +00:00
"""
Below follows the RPC backend it is prefixed with rpc_ to raise awareness that it is
a remotely exposed function
"""
# Fetch open trades
if trade_ids:
2023-03-15 20:09:25 +00:00
trades: Sequence[Trade] = Trade.get_trades(trade_filter=Trade.id.in_(trade_ids)).all()
else:
trades = Trade.get_open_trades()
if not trades:
2024-05-12 14:51:11 +00:00
raise RPCException("no active trade")
2018-02-13 03:45:59 +00:00
else:
results = []
2018-02-13 03:45:59 +00:00
for trade in trades:
current_profit_fiat: float | None = None
total_profit_fiat: float | None = None
2023-06-21 01:52:06 +00:00
# prepare open orders details
oo_details: str | None = ""
2023-06-21 01:52:06 +00:00
oo_details_lst = [
2024-05-12 14:51:11 +00:00
f"({oo.order_type} {oo.side} rem={oo.safe_remaining:.8f})"
2023-06-21 01:52:06 +00:00
for oo in trade.open_orders
2024-05-12 14:51:11 +00:00
if oo.ft_order_side not in ["stoploss"]
2023-06-21 01:52:06 +00:00
]
2024-05-12 14:51:11 +00:00
oo_details = ", ".join(oo_details_lst)
2023-06-21 01:52:06 +00:00
2023-08-29 19:29:36 +00:00
total_profit_abs = 0.0
total_profit_ratio: float | None = None
2018-02-13 03:45:59 +00:00
# calculate profit and send message to user
if trade.is_open:
try:
2021-07-18 03:58:54 +00:00
current_rate = self._freqtrade.exchange.get_rate(
2024-05-12 14:51:11 +00:00
trade.pair, side="exit", is_short=trade.is_short, refresh=False
)
except (ExchangeError, PricingError):
current_rate = nan
2022-12-15 06:04:59 +00:00
if len(trade.select_filled_orders(trade.entry_side)) > 0:
current_profit = current_profit_abs = current_profit_fiat = nan
2023-08-29 19:29:36 +00:00
if not isnan(current_rate):
prof = trade.calculate_profit(current_rate)
2023-08-29 19:29:36 +00:00
current_profit = prof.profit_ratio
current_profit_abs = prof.profit_abs
total_profit_abs = prof.total_profit
total_profit_ratio = prof.total_profit_ratio
2022-12-15 06:04:59 +00:00
else:
current_profit = current_profit_abs = current_profit_fiat = 0.0
2023-08-29 19:29:36 +00:00
else:
2022-12-15 06:04:59 +00:00
# Closed trade ...
current_rate = trade.close_rate
2023-02-20 06:12:09 +00:00
current_profit = trade.close_profit or 0.0
current_profit_abs = trade.close_profit_abs or 0.0
2022-12-15 06:04:59 +00:00
# Calculate fiat profit
if not isnan(current_profit_abs) and self._fiat_converter:
current_profit_fiat = self._fiat_converter.convert_amount(
current_profit_abs,
2024-05-12 14:51:11 +00:00
self._freqtrade.config["stake_currency"],
self._freqtrade.config["fiat_display_currency"],
2022-12-15 06:04:59 +00:00
)
2023-02-28 19:31:02 +00:00
total_profit_fiat = self._fiat_converter.convert_amount(
total_profit_abs,
2024-05-12 14:51:11 +00:00
self._freqtrade.config["stake_currency"],
self._freqtrade.config["fiat_display_currency"],
)
2021-04-02 10:20:38 +00:00
2020-06-04 04:56:59 +00:00
# Calculate guaranteed profit (in case of trailing stop)
stop_entry = trade.calculate_profit(trade.stop_loss)
2023-08-29 19:29:36 +00:00
stoploss_entry_dist = stop_entry.profit_abs
stoploss_entry_dist_ratio = stop_entry.profit_ratio
2020-06-04 04:56:59 +00:00
# calculate distance to stoploss
stoploss_current_dist = trade.stop_loss - current_rate
stoploss_current_dist_ratio = stoploss_current_dist / current_rate
trade_dict = trade.to_json()
2024-05-12 14:51:11 +00:00
trade_dict.update(
dict(
close_profit=trade.close_profit if not trade.is_open else None,
current_rate=current_rate,
profit_ratio=current_profit,
profit_pct=round(current_profit * 100, 2),
profit_abs=current_profit_abs,
profit_fiat=current_profit_fiat,
total_profit_abs=total_profit_abs,
total_profit_fiat=total_profit_fiat,
total_profit_ratio=total_profit_ratio,
stoploss_current_dist=stoploss_current_dist,
stoploss_current_dist_ratio=round(stoploss_current_dist_ratio, 8),
stoploss_current_dist_pct=round(stoploss_current_dist_ratio * 100, 2),
stoploss_entry_dist=stoploss_entry_dist,
stoploss_entry_dist_ratio=round(stoploss_entry_dist_ratio, 8),
open_orders=oo_details,
)
)
results.append(trade_dict)
return results
2018-02-13 03:45:59 +00:00
2024-05-12 14:51:11 +00:00
def _rpc_status_table(
self, stake_currency: str, fiat_display_currency: str
) -> tuple[list, list, float]:
trades: list[Trade] = Trade.get_open_trades()
2024-05-12 14:51:11 +00:00
nonspot = self._config.get("trading_mode", TradingMode.SPOT) != TradingMode.SPOT
if not trades:
2024-05-12 14:51:11 +00:00
raise RPCException("no active trade")
2018-02-13 03:45:59 +00:00
else:
trades_list = []
fiat_profit_sum = nan
2018-02-13 03:45:59 +00:00
for trade in trades:
# calculate profit and send message to user
try:
2021-07-18 03:58:54 +00:00
current_rate = self._freqtrade.exchange.get_rate(
2024-05-12 14:51:11 +00:00
trade.pair, side="exit", is_short=trade.is_short, refresh=False
)
2020-06-28 14:01:40 +00:00
except (PricingError, ExchangeError):
current_rate = nan
trade_profit = nan
profit_str = f"{nan:.2%}"
2022-05-07 18:56:22 +00:00
else:
2022-08-11 15:02:52 +00:00
if trade.nr_of_successful_entries > 0:
profit = trade.calculate_profit(current_rate)
trade_profit = profit.profit_abs
2024-05-12 14:51:11 +00:00
profit_str = f"{profit.profit_ratio:.2%}"
2022-08-11 15:02:52 +00:00
else:
trade_profit = 0.0
2024-05-12 14:51:11 +00:00
profit_str = f"{0.0:.2f}"
leverage = f"{trade.leverage:.3g}"
direction_str = (
(f"S {leverage}x" if trade.is_short else f"L {leverage}x") if nonspot else ""
)
2019-11-12 13:58:41 +00:00
if self._fiat_converter:
fiat_profit = self._fiat_converter.convert_amount(
2024-05-12 14:51:11 +00:00
trade_profit, stake_currency, fiat_display_currency
2020-02-08 20:02:52 +00:00
)
2022-05-07 18:56:22 +00:00
if not isnan(fiat_profit):
2019-11-12 13:58:41 +00:00
profit_str += f" ({fiat_profit:.2f})"
2024-05-12 14:51:11 +00:00
fiat_profit_sum = (
fiat_profit if isnan(fiat_profit_sum) else fiat_profit_sum + fiat_profit
)
else:
profit_str += f" ({trade_profit:.2f})"
2024-05-12 14:51:11 +00:00
fiat_profit_sum = (
trade_profit if isnan(fiat_profit_sum) else fiat_profit_sum + trade_profit
)
2023-06-21 03:12:31 +00:00
active_attempt_side_symbols = [
2024-05-12 14:51:11 +00:00
"*" if (oo and oo.ft_order_side == trade.entry_side) else "**"
2023-06-21 03:12:31 +00:00
for oo in trade.open_orders
]
2024-04-18 20:51:25 +00:00
# example: '*.**.**' trying to enter, exit and exit with 3 different orders
2024-05-12 14:51:11 +00:00
active_attempt_side_symbols_str = ".".join(active_attempt_side_symbols)
2022-01-19 07:14:21 +00:00
detail_trade = [
2024-05-12 14:51:11 +00:00
f"{trade.id} {direction_str}",
2023-06-21 03:12:31 +00:00
trade.pair + active_attempt_side_symbols_str,
2024-04-21 13:29:11 +00:00
shorten_date(dt_humanize_delta(trade.open_date_utc)),
2024-05-12 14:51:11 +00:00
profit_str,
2022-01-19 07:14:21 +00:00
]
2023-06-21 03:12:31 +00:00
2024-05-12 14:51:11 +00:00
if self._config.get("position_adjustment_enable", False):
max_entry_str = ""
if self._config.get("max_entry_position_adjustment", -1) > 0:
2022-02-13 14:10:09 +00:00
max_entry_str = f"/{self._config['max_entry_position_adjustment'] + 1}"
filled_entries = trade.nr_of_successful_entries
detail_trade.append(f"{filled_entries}{max_entry_str}")
2022-01-19 07:14:21 +00:00
trades_list.append(detail_trade)
2019-11-12 13:58:41 +00:00
profitcol = "Profit"
if self._fiat_converter:
profitcol += " (" + fiat_display_currency + ")"
else:
profitcol += " (" + stake_currency + ")"
2018-03-02 15:22:00 +00:00
2024-05-12 14:51:11 +00:00
columns = ["ID L/S" if nonspot else "ID", "Pair", "Since", profitcol]
if self._config.get("position_adjustment_enable", False):
columns.append("# Entries")
return trades_list, columns, fiat_profit_sum
2018-02-13 03:45:59 +00:00
def _rpc_timeunit_profit(
2024-05-12 14:51:11 +00:00
self,
timescale: int,
stake_currency: str,
fiat_display_currency: str,
timeunit: str = "days",
) -> dict[str, Any]:
"""
:param timeunit: Valid entries are 'days', 'weeks', 'months'
"""
start_date = datetime.now(timezone.utc).date()
2024-05-12 14:51:11 +00:00
if timeunit == "weeks":
# weekly
start_date = start_date - timedelta(days=start_date.weekday()) # Monday
2024-05-12 14:51:11 +00:00
if timeunit == "months":
start_date = start_date.replace(day=1)
def time_offset(step: int):
2024-05-12 14:51:11 +00:00
if timeunit == "months":
return relativedelta(months=step)
return timedelta(**{timeunit: step})
2018-03-02 15:22:00 +00:00
2018-02-13 03:45:59 +00:00
if not (isinstance(timescale, int) and timescale > 0):
2024-05-12 14:51:11 +00:00
raise RPCException("timescale must be an integer greater than 0")
2018-03-02 15:22:00 +00:00
profit_units: dict[date, dict] = {}
daily_stake = self._freqtrade.wallets.get_total_stake_amount()
2018-02-13 03:45:59 +00:00
for day in range(0, timescale):
profitday = start_date - time_offset(day)
# Only query for necessary columns for performance reasons.
2023-03-15 20:12:06 +00:00
trades = Trade.session.execute(
select(Trade.close_profit_abs)
2024-05-12 14:51:11 +00:00
.filter(
Trade.is_open.is_(False),
Trade.close_date >= profitday,
Trade.close_date < (profitday + time_offset(1)),
)
.order_by(Trade.close_date)
).all()
curdayprofit = sum(
2024-05-12 14:51:11 +00:00
trade.close_profit_abs for trade in trades if trade.close_profit_abs is not None
)
# Calculate this periods starting balance
daily_stake = daily_stake - curdayprofit
profit_units[profitday] = {
2024-05-12 14:51:11 +00:00
"amount": curdayprofit,
"daily_stake": daily_stake,
"rel_profit": round(curdayprofit / daily_stake, 8) if daily_stake > 0 else 0,
"trades": len(trades),
2018-02-13 03:45:59 +00:00
}
2018-03-02 15:22:00 +00:00
2020-05-17 18:12:01 +00:00
data = [
{
2024-05-12 14:51:11 +00:00
"date": key,
"abs_profit": value["amount"],
"starting_balance": value["daily_stake"],
"rel_profit": value["rel_profit"],
2024-05-13 17:49:15 +00:00
"fiat_value": (
self._fiat_converter.convert_amount(
value["amount"], stake_currency, fiat_display_currency
)
if self._fiat_converter
else 0
),
2024-05-12 14:51:11 +00:00
"trade_count": value["trades"],
2020-05-17 18:12:01 +00:00
}
for key, value in profit_units.items()
]
return {
2024-05-12 14:51:11 +00:00
"stake_currency": stake_currency,
"fiat_display_currency": fiat_display_currency,
"data": data,
}
def _rpc_trade_history(self, limit: int, offset: int = 0, order_by_id: bool = False) -> dict:
2024-05-12 14:51:11 +00:00
"""Returns the X last trades"""
2023-02-20 19:22:41 +00:00
order_by: Any = Trade.id if order_by_id else Trade.close_date.desc()
if limit:
2023-03-16 06:04:15 +00:00
trades = Trade.session.scalars(
Trade.get_trades_query([Trade.is_open.is_(False)])
.order_by(order_by)
.limit(limit)
2024-05-12 14:51:11 +00:00
.offset(offset)
)
2020-04-05 14:14:02 +00:00
else:
2023-03-16 06:04:15 +00:00
trades = Trade.session.scalars(
2024-05-12 14:51:11 +00:00
Trade.get_trades_query([Trade.is_open.is_(False)]).order_by(Trade.close_date.desc())
)
2020-04-05 14:14:02 +00:00
2020-04-08 05:56:21 +00:00
output = [trade.to_json() for trade in trades]
2023-03-15 20:12:06 +00:00
total_trades = Trade.session.scalar(
2024-05-12 14:51:11 +00:00
select(func.count(Trade.id)).filter(Trade.is_open.is_(False))
)
2020-04-05 14:14:02 +00:00
return {
2020-04-06 09:00:31 +00:00
"trades": output,
"trades_count": len(output),
2022-06-18 15:44:15 +00:00
"offset": offset,
2023-03-13 18:21:53 +00:00
"total_trades": total_trades,
2020-04-05 14:14:02 +00:00
}
def _rpc_stats(self) -> dict[str, Any]:
"""
Generate generic stats for trades in database
"""
2024-05-12 14:51:11 +00:00
def trade_win_loss(trade):
2020-12-05 13:48:56 +00:00
if trade.close_profit > 0:
2024-05-12 14:51:11 +00:00
return "wins"
2020-12-05 13:48:56 +00:00
elif trade.close_profit < 0:
2024-05-12 14:51:11 +00:00
return "losses"
else:
2024-05-12 14:51:11 +00:00
return "draws"
2023-02-20 19:22:41 +00:00
trades = Trade.get_trades([Trade.is_open.is_(False)], include_orders=False)
2023-05-03 05:03:14 +00:00
# Duration
dur: dict[str, list[float]] = {"wins": [], "draws": [], "losses": []}
2023-05-03 05:03:14 +00:00
# Exit reason
2022-03-24 19:33:47 +00:00
exit_reasons = {}
for trade in trades:
2022-03-24 19:33:47 +00:00
if trade.exit_reason not in exit_reasons:
2024-05-12 14:51:11 +00:00
exit_reasons[trade.exit_reason] = {"wins": 0, "losses": 0, "draws": 0}
2022-03-24 19:33:47 +00:00
exit_reasons[trade.exit_reason][trade_win_loss(trade)] += 1
if trade.close_date is not None and trade.open_date is not None:
trade_dur = (trade.close_date - trade.open_date).total_seconds()
dur[trade_win_loss(trade)].append(trade_dur)
2024-05-12 14:51:11 +00:00
wins_dur = sum(dur["wins"]) / len(dur["wins"]) if len(dur["wins"]) > 0 else None
draws_dur = sum(dur["draws"]) / len(dur["draws"]) if len(dur["draws"]) > 0 else None
losses_dur = sum(dur["losses"]) / len(dur["losses"]) if len(dur["losses"]) > 0 else None
2024-05-12 14:51:11 +00:00
durations = {"wins": wins_dur, "draws": draws_dur, "losses": losses_dur}
return {"exit_reasons": exit_reasons, "durations": durations}
2020-12-05 13:06:46 +00:00
2018-06-08 02:52:50 +00:00
def _rpc_trade_statistics(
self, stake_currency: str, fiat_display_currency: str, start_date: datetime | None = None
) -> dict[str, Any]:
2024-05-12 14:51:11 +00:00
"""Returns cumulative profit statistics"""
2024-04-20 08:30:04 +00:00
start_date = datetime.fromtimestamp(0) if start_date is None else start_date
2024-05-12 14:51:11 +00:00
trade_filter = (
Trade.is_open.is_(False) & (Trade.close_date >= start_date)
) | Trade.is_open.is_(True)
trades: Sequence[Trade] = Trade.session.scalars(
Trade.get_trades_query(trade_filter, include_orders=False).order_by(Trade.id)
).all()
2018-03-02 15:22:00 +00:00
2018-02-13 03:45:59 +00:00
profit_all_coin = []
2020-02-28 09:36:39 +00:00
profit_all_ratio = []
2018-02-13 03:45:59 +00:00
profit_closed_coin = []
2020-02-28 09:36:39 +00:00
profit_closed_ratio = []
2018-02-13 03:45:59 +00:00
durations = []
2020-06-24 04:43:19 +00:00
winning_trades = 0
losing_trades = 0
winning_profit = 0.0
losing_profit = 0.0
2018-03-02 15:22:00 +00:00
2018-02-13 03:45:59 +00:00
for trade in trades:
2018-06-02 11:43:51 +00:00
current_rate: float = 0.0
2018-03-02 15:22:00 +00:00
2018-02-13 03:45:59 +00:00
if trade.close_date:
durations.append((trade.close_date - trade.open_date).total_seconds())
2018-03-02 15:22:00 +00:00
2018-02-13 03:45:59 +00:00
if not trade.is_open:
2023-02-20 06:12:09 +00:00
profit_ratio = trade.close_profit or 0.0
profit_abs = trade.close_profit_abs or 0.0
profit_closed_coin.append(profit_abs)
2020-02-28 09:36:39 +00:00
profit_closed_ratio.append(profit_ratio)
2023-02-20 06:12:09 +00:00
if profit_ratio >= 0:
2020-06-24 04:43:19 +00:00
winning_trades += 1
winning_profit += profit_abs
2020-06-24 04:43:19 +00:00
else:
losing_trades += 1
losing_profit += profit_abs
2018-02-13 03:45:59 +00:00
else:
# Get current rate
if len(trade.select_filled_orders(trade.entry_side)) == 0:
# Skip trades with no filled orders
continue
try:
2021-07-18 03:58:54 +00:00
current_rate = self._freqtrade.exchange.get_rate(
2024-05-12 14:51:11 +00:00
trade.pair, side="exit", is_short=trade.is_short, refresh=False
)
2020-06-28 14:01:40 +00:00
except (PricingError, ExchangeError):
current_rate = nan
profit_ratio = nan
profit_abs = nan
2022-08-11 15:02:52 +00:00
else:
_profit = trade.calculate_profit(trade.close_rate or current_rate)
profit_ratio = _profit.profit_ratio
profit_abs = _profit.total_profit
2018-03-02 15:22:00 +00:00
profit_all_coin.append(profit_abs)
2020-02-28 09:36:39 +00:00
profit_all_ratio.append(profit_ratio)
2018-03-02 15:22:00 +00:00
2023-07-15 15:09:13 +00:00
closed_trade_count = len([t for t in trades if not t.is_open])
best_pair = Trade.get_best_pair(start_date)
2022-06-18 09:40:32 +00:00
trading_volume = Trade.get_trading_volume(start_date)
2018-03-02 15:22:00 +00:00
2018-02-13 03:45:59 +00:00
# Prepare data to display
profit_closed_coin_sum = round(sum(profit_closed_coin), 8)
2021-01-31 10:21:23 +00:00
profit_closed_ratio_mean = float(mean(profit_closed_ratio) if profit_closed_ratio else 0.0)
2020-06-03 17:40:30 +00:00
profit_closed_ratio_sum = sum(profit_closed_ratio) if profit_closed_ratio else 0.0
2024-05-12 14:51:11 +00:00
profit_closed_fiat = (
self._fiat_converter.convert_amount(
profit_closed_coin_sum, stake_currency, fiat_display_currency
)
if self._fiat_converter
else 0
)
2018-07-21 18:44:38 +00:00
profit_all_coin_sum = round(sum(profit_all_coin), 8)
2021-01-31 10:21:23 +00:00
profit_all_ratio_mean = float(mean(profit_all_ratio) if profit_all_ratio else 0.0)
# Doing the sum is not right - overall profit needs to be based on initial capital
2020-06-03 17:40:30 +00:00
profit_all_ratio_sum = sum(profit_all_ratio) if profit_all_ratio else 0.0
starting_balance = self._freqtrade.wallets.get_starting_balance()
profit_closed_ratio_fromstart = 0
profit_all_ratio_fromstart = 0
if starting_balance:
profit_closed_ratio_fromstart = profit_closed_coin_sum / starting_balance
profit_all_ratio_fromstart = profit_all_coin_sum / starting_balance
2024-05-12 14:51:11 +00:00
profit_factor = winning_profit / abs(losing_profit) if losing_profit else float("inf")
winrate = (winning_trades / closed_trade_count) if closed_trade_count > 0 else 0
2023-07-15 15:25:19 +00:00
2024-05-12 14:51:11 +00:00
trades_df = DataFrame(
[
{
"close_date": format_date(trade.close_date),
"close_date_dt": trade.close_date,
"profit_abs": trade.close_profit_abs,
}
for trade in trades
if not trade.is_open and trade.close_date
]
)
2023-07-22 00:18:22 +00:00
2023-07-22 08:29:43 +00:00
expectancy, expectancy_ratio = calculate_expectancy(trades_df)
2023-07-22 00:19:36 +00:00
drawdown = DrawDownResult()
if len(trades_df) > 0:
try:
drawdown = calculate_max_drawdown(
2024-05-12 14:51:11 +00:00
trades_df,
value_col="profit_abs",
date_col="close_date_dt",
starting_balance=starting_balance,
)
except ValueError:
# ValueError if no losing trade.
pass
2024-05-12 14:51:11 +00:00
profit_all_fiat = (
self._fiat_converter.convert_amount(
profit_all_coin_sum, stake_currency, fiat_display_currency
)
if self._fiat_converter
else 0
)
2018-07-21 18:44:38 +00:00
first_date = trades[0].open_date_utc if trades else None
last_date = trades[-1].open_date_utc if trades else None
2018-02-13 03:45:59 +00:00
num = float(len(durations) or 1)
2023-04-08 14:38:44 +00:00
bot_start = KeyValueStore.get_datetime_value(KeyStoreKeys.BOT_START_TIME)
2018-06-08 02:52:50 +00:00
return {
2024-05-12 14:51:11 +00:00
"profit_closed_coin": profit_closed_coin_sum,
"profit_closed_percent_mean": round(profit_closed_ratio_mean * 100, 2),
"profit_closed_ratio_mean": profit_closed_ratio_mean,
"profit_closed_percent_sum": round(profit_closed_ratio_sum * 100, 2),
"profit_closed_ratio_sum": profit_closed_ratio_sum,
"profit_closed_ratio": profit_closed_ratio_fromstart,
"profit_closed_percent": round(profit_closed_ratio_fromstart * 100, 2),
"profit_closed_fiat": profit_closed_fiat,
"profit_all_coin": profit_all_coin_sum,
"profit_all_percent_mean": round(profit_all_ratio_mean * 100, 2),
"profit_all_ratio_mean": profit_all_ratio_mean,
"profit_all_percent_sum": round(profit_all_ratio_sum * 100, 2),
"profit_all_ratio_sum": profit_all_ratio_sum,
"profit_all_ratio": profit_all_ratio_fromstart,
"profit_all_percent": round(profit_all_ratio_fromstart * 100, 2),
"profit_all_fiat": profit_all_fiat,
"trade_count": len(trades),
"closed_trade_count": closed_trade_count,
"first_trade_date": format_date(first_date),
"first_trade_humanized": dt_humanize_delta(first_date) if first_date else "",
"first_trade_timestamp": dt_ts_def(first_date, 0),
"latest_trade_date": format_date(last_date),
"latest_trade_humanized": dt_humanize_delta(last_date) if last_date else "",
"latest_trade_timestamp": dt_ts_def(last_date, 0),
"avg_duration": str(timedelta(seconds=sum(durations) / num)).split(".")[0],
"best_pair": best_pair[0] if best_pair else "",
"best_rate": round(best_pair[1] * 100, 2) if best_pair else 0, # Deprecated
"best_pair_profit_ratio": best_pair[1] if best_pair else 0,
"winning_trades": winning_trades,
"losing_trades": losing_trades,
"profit_factor": profit_factor,
"winrate": winrate,
"expectancy": expectancy,
"expectancy_ratio": expectancy_ratio,
"max_drawdown": drawdown.relative_account_drawdown,
"max_drawdown_abs": drawdown.drawdown_abs,
"max_drawdown_start": format_date(drawdown.high_date),
"max_drawdown_start_timestamp": dt_ts_def(drawdown.high_date),
"max_drawdown_end": format_date(drawdown.low_date),
"max_drawdown_end_timestamp": dt_ts_def(drawdown.low_date),
"drawdown_high": drawdown.high_value,
"drawdown_low": drawdown.low_value,
2024-05-12 14:51:11 +00:00
"trading_volume": trading_volume,
"bot_start_timestamp": dt_ts_def(bot_start, 0),
"bot_start_date": format_date(bot_start),
2018-06-08 02:52:50 +00:00
}
2023-04-22 09:08:37 +00:00
def __balance_get_est_stake(
2024-05-12 14:51:11 +00:00
self, coin: str, stake_currency: str, amount: float, balance: Wallet, tickers
) -> tuple[float, float]:
2023-04-22 09:08:37 +00:00
est_stake = 0.0
2023-04-22 15:13:53 +00:00
est_bot_stake = 0.0
2023-04-22 09:08:37 +00:00
if coin == stake_currency:
est_stake = balance.total
2024-05-12 14:51:11 +00:00
if self._config.get("trading_mode", TradingMode.SPOT) != TradingMode.SPOT:
2023-04-22 09:08:37 +00:00
# in Futures, "total" includes the locked stake, and therefore all positions
est_stake = balance.free
2023-04-24 10:03:00 +00:00
est_bot_stake = amount
2023-04-22 09:08:37 +00:00
else:
pair = self._freqtrade.exchange.get_valid_pair_combination(coin, stake_currency)
rate: float | None = tickers.get(pair, {}).get("last", None)
if rate:
if pair.startswith(stake_currency) and not pair.endswith(stake_currency):
rate = 1.0 / rate
est_stake = rate * balance.total
est_bot_stake = rate * amount
2023-04-22 09:08:37 +00:00
2023-04-22 15:13:53 +00:00
return est_stake, est_bot_stake
2023-04-22 09:08:37 +00:00
def _rpc_balance(self, stake_currency: str, fiat_display_currency: str) -> dict:
2024-05-12 14:51:11 +00:00
"""Returns current account balance per crypto"""
currencies: list[dict] = []
2018-02-13 03:45:59 +00:00
total = 0.0
total_bot = 0.0
2019-11-14 19:12:41 +00:00
try:
2023-04-22 09:08:37 +00:00
tickers: Tickers = self._freqtrade.exchange.get_tickers(cached=True)
2024-05-12 14:51:11 +00:00
except ExchangeError:
raise RPCException("Error getting current tickers.")
2023-04-22 09:08:37 +00:00
open_trades: list[Trade] = Trade.get_open_trades()
open_assets: dict[str, Trade] = {t.safe_base_currency: t for t in open_trades}
2020-01-15 05:43:41 +00:00
self._freqtrade.wallets.update(require_update=False)
starting_capital = self._freqtrade.wallets.get_starting_balance()
2024-05-12 14:51:11 +00:00
starting_cap_fiat = (
self._fiat_converter.convert_amount(
starting_capital, stake_currency, fiat_display_currency
)
if self._fiat_converter
else 0
)
2022-02-19 09:58:17 +00:00
coin: str
balance: Wallet
for coin, balance in self._freqtrade.wallets.get_all_balances().items():
if not balance.total:
2018-05-14 21:31:56 +00:00
continue
2023-04-22 15:13:53 +00:00
trade = open_assets.get(coin, None)
is_bot_managed = coin == stake_currency or trade is not None
trade_amount = trade.amount if trade else 0
2023-04-22 15:42:09 +00:00
if coin == stake_currency:
trade_amount = self._freqtrade.wallets.get_available_stake_amount()
2023-04-22 15:13:53 +00:00
2023-04-22 09:08:37 +00:00
try:
2023-04-22 15:13:53 +00:00
est_stake, est_stake_bot = self.__balance_get_est_stake(
2024-05-12 14:51:11 +00:00
coin, stake_currency, trade_amount, balance, tickers
)
2023-04-22 09:08:37 +00:00
except ValueError:
continue
2018-05-14 21:31:56 +00:00
total += est_stake
2023-04-22 15:13:53 +00:00
2023-04-22 12:57:13 +00:00
if is_bot_managed:
2023-04-22 15:13:53 +00:00
total_bot += est_stake_bot
2024-05-12 14:51:11 +00:00
currencies.append(
{
"currency": coin,
"free": balance.free,
"balance": balance.total,
"used": balance.used,
"bot_owned": trade_amount,
"est_stake": est_stake or 0,
"est_stake_bot": est_stake_bot if is_bot_managed else 0,
"stake": stake_currency,
"side": "long",
"position": 0,
"is_bot_managed": is_bot_managed,
"is_position": False,
}
)
2022-02-19 09:58:17 +00:00
symbol: str
position: PositionWallet
for symbol, position in self._freqtrade.wallets.get_all_positions().items():
total += position.collateral
2023-04-24 10:03:00 +00:00
total_bot += position.collateral
2022-02-19 09:58:17 +00:00
2024-05-12 14:51:11 +00:00
currencies.append(
{
"currency": symbol,
"free": 0,
"balance": 0,
"used": 0,
"position": position.position,
"est_stake": position.collateral,
"est_stake_bot": position.collateral,
"stake": stake_currency,
"side": position.side,
"is_bot_managed": True,
"is_position": True,
}
)
value = (
self._fiat_converter.convert_amount(total, stake_currency, fiat_display_currency)
if self._fiat_converter
else 0
)
value_bot = (
self._fiat_converter.convert_amount(total_bot, stake_currency, fiat_display_currency)
if self._fiat_converter
else 0
)
trade_count = len(Trade.get_trades_proxy())
starting_capital_ratio = (total_bot / starting_capital) - 1 if starting_capital else 0.0
starting_cap_fiat_ratio = (value_bot / starting_cap_fiat) - 1 if starting_cap_fiat else 0.0
2018-06-22 02:08:51 +00:00
return {
2024-05-12 14:51:11 +00:00
"currencies": currencies,
"total": total,
"total_bot": total_bot,
"symbol": fiat_display_currency,
"value": value,
"value_bot": value_bot,
"stake": stake_currency,
"starting_capital": starting_capital,
"starting_capital_ratio": starting_capital_ratio,
"starting_capital_pct": round(starting_capital_ratio * 100, 2),
"starting_capital_fiat": starting_cap_fiat,
"starting_capital_fiat_ratio": starting_cap_fiat_ratio,
"starting_capital_fiat_pct": round(starting_cap_fiat_ratio * 100, 2),
"trade_count": trade_count,
"note": "Simulated balances" if self._freqtrade.config["dry_run"] else "",
2018-06-22 02:08:51 +00:00
}
2018-02-13 03:45:59 +00:00
def _rpc_start(self) -> dict[str, str]:
2024-05-12 14:51:11 +00:00
"""Handler for start"""
2018-06-08 22:20:10 +00:00
if self._freqtrade.state == State.RUNNING:
2024-05-12 14:51:11 +00:00
return {"status": "already running"}
2018-03-02 15:22:00 +00:00
2018-06-08 22:20:10 +00:00
self._freqtrade.state = State.RUNNING
2024-05-12 14:51:11 +00:00
return {"status": "starting trader ..."}
2018-02-13 03:45:59 +00:00
def _rpc_stop(self) -> dict[str, str]:
2024-05-12 14:51:11 +00:00
"""Handler for stop"""
2018-06-08 22:20:10 +00:00
if self._freqtrade.state == State.RUNNING:
self._freqtrade.state = State.STOPPED
2024-05-12 14:51:11 +00:00
return {"status": "stopping trader ..."}
2018-03-02 15:22:00 +00:00
2024-05-12 14:51:11 +00:00
return {"status": "already stopped"}
2018-02-13 03:45:59 +00:00
def _rpc_reload_config(self) -> dict[str, str]:
2024-05-12 14:51:11 +00:00
"""Handler for reload_config."""
self._freqtrade.state = State.RELOAD_CONFIG
2024-05-12 14:51:11 +00:00
return {"status": "Reloading config ..."}
def _rpc_stopentry(self) -> dict[str, str]:
"""
Handler to stop buying, but handle open trades gracefully.
"""
if self._freqtrade.state == State.RUNNING:
# Set 'max_open_trades' to 0
2024-05-12 14:51:11 +00:00
self._freqtrade.config["max_open_trades"] = 0
self._freqtrade.strategy.max_open_trades = 0
2024-05-12 14:51:11 +00:00
return {"status": "No more entries will occur from now. Run /reload_config to reset."}
def _rpc_reload_trade_from_exchange(self, trade_id: int) -> dict[str, str]:
"""
Handler for reload_trade_from_exchange.
Reloads a trade from it's orders, should manual interaction have happened.
"""
trade = Trade.get_trades(trade_filter=[Trade.id == trade_id]).first()
if not trade:
raise RPCException(f"Could not find trade with id {trade_id}.")
self._freqtrade.handle_onexchange_order(trade)
2024-05-12 14:51:11 +00:00
return {"status": "Reloaded from orders from exchange"}
2024-05-12 14:51:11 +00:00
def __exec_force_exit(
self, trade: Trade, ordertype: str | None, amount: float | None = None
2024-05-12 14:51:11 +00:00
) -> bool:
2023-09-09 08:09:37 +00:00
# Check if there is there are open orders
trade_entry_cancelation_registry = []
2023-06-21 05:48:57 +00:00
for oo in trade.open_orders:
2024-05-12 14:51:11 +00:00
trade_entry_cancelation_res = {"order_id": oo.order_id, "cancel_state": False}
2023-06-21 05:48:57 +00:00
order = self._freqtrade.exchange.fetch_order(oo.order_id, trade.pair)
2024-05-12 14:51:11 +00:00
if order["side"] == trade.entry_side:
fully_canceled = self._freqtrade.handle_cancel_enter(
2024-05-12 14:51:11 +00:00
trade, order, oo, CANCEL_REASON["FORCE_EXIT"]
)
trade_entry_cancelation_res["cancel_state"] = fully_canceled
trade_entry_cancelation_registry.append(trade_entry_cancelation_res)
2024-05-12 14:51:11 +00:00
if order["side"] == trade.exit_side:
# Cancel order - so it is placed anew with a fresh price.
2024-05-12 14:51:11 +00:00
self._freqtrade.handle_cancel_exit(trade, order, oo, CANCEL_REASON["FORCE_EXIT"])
2024-05-12 14:51:11 +00:00
if all(tocr["cancel_state"] is False for tocr in trade_entry_cancelation_registry):
2023-06-21 05:48:57 +00:00
if trade.has_open_orders:
# Order cancellation failed, so we can't exit.
return False
# Get current rate and execute sell
current_rate = self._freqtrade.exchange.get_rate(
2024-05-12 14:51:11 +00:00
trade.pair, side="exit", is_short=trade.is_short, refresh=True
)
exit_check = ExitCheckTuple(exit_type=ExitType.FORCE_EXIT)
order_type = ordertype or self._freqtrade.strategy.order_types.get(
2024-05-12 14:51:11 +00:00
"force_exit", self._freqtrade.strategy.order_types["exit"]
)
sub_amount: float | None = None
2022-08-10 04:44:41 +00:00
if amount and amount < trade.amount:
# Partial exit ...
min_exit_stake = self._freqtrade.exchange.get_min_pair_stake_amount(
2024-05-12 14:51:11 +00:00
trade.pair, current_rate, trade.stop_loss_pct
)
2022-08-10 04:44:41 +00:00
remaining = (trade.amount - amount) * current_rate
if remaining < min_exit_stake:
2024-05-12 14:51:11 +00:00
raise RPCException(f"Remaining amount of {remaining} would be too small.")
2022-08-10 04:44:41 +00:00
sub_amount = amount
self._freqtrade.execute_trade_exit(
2024-05-12 14:51:11 +00:00
trade, current_rate, exit_check, ordertype=order_type, sub_trade_amt=sub_amount
)
return True
return False
2024-05-12 14:51:11 +00:00
def _rpc_force_exit(
self, trade_id: str, ordertype: str | None = None, *, amount: float | None = None
) -> dict[str, str]:
2018-02-13 03:45:59 +00:00
"""
2022-04-10 13:56:29 +00:00
Handler for forceexit <id>.
2018-02-13 03:45:59 +00:00
Sells the given trade at current price
"""
2022-08-02 17:53:10 +00:00
2018-06-08 22:20:10 +00:00
if self._freqtrade.state != State.RUNNING:
2024-05-12 14:51:11 +00:00
raise RPCException("trader is not running")
2018-03-02 15:22:00 +00:00
2021-09-08 06:49:04 +00:00
with self._freqtrade._exit_lock:
2024-05-12 14:51:11 +00:00
if trade_id == "all":
2023-05-31 12:31:45 +00:00
# Execute exit for all open orders
for trade in Trade.get_open_trades():
2022-08-02 18:16:01 +00:00
self.__exec_force_exit(trade, ordertype)
2021-04-15 05:57:52 +00:00
Trade.commit()
self._freqtrade.wallets.update()
2024-05-12 14:51:11 +00:00
return {"result": "Created exit orders for all open trades."}
# Query for trade
trade = Trade.get_trades(
2024-05-12 14:51:11 +00:00
trade_filter=[
Trade.id == trade_id,
Trade.is_open.is_(True),
]
).first()
if not trade:
2024-05-12 14:51:11 +00:00
logger.warning("force_exit: Invalid argument received")
raise RPCException("invalid argument")
result = self.__exec_force_exit(trade, ordertype, amount)
2021-04-15 05:57:52 +00:00
Trade.commit()
2020-01-22 18:54:55 +00:00
self._freqtrade.wallets.update()
if not result:
2024-05-12 14:51:11 +00:00
raise RPCException("Failed to exit trade.")
return {"result": f"Created exit order for trade {trade_id}."}
2018-02-13 03:45:59 +00:00
2022-11-29 17:27:08 +00:00
def _force_entry_validations(self, pair: str, order_side: SignalDirection):
2024-05-12 14:51:11 +00:00
if not self._freqtrade.config.get("force_entry_enable", False):
raise RPCException("Force_entry not enabled.")
2018-10-09 17:25:43 +00:00
if self._freqtrade.state != State.RUNNING:
2024-05-12 14:51:11 +00:00
raise RPCException("trader is not running")
2018-10-09 17:25:43 +00:00
2022-01-26 18:53:46 +00:00
if order_side == SignalDirection.SHORT and self._freqtrade.trading_mode == TradingMode.SPOT:
2022-01-27 05:40:41 +00:00
raise RPCException("Can't go short on Spot markets.")
2022-01-26 18:53:46 +00:00
2022-11-29 17:27:08 +00:00
if pair not in self._freqtrade.exchange.get_markets(tradable_only=True):
2024-05-12 14:51:11 +00:00
raise RPCException("Symbol does not exist or market is not active.")
# Check if pair quote currency equals to the stake currency.
2024-05-12 14:51:11 +00:00
stake_currency = self._freqtrade.config.get("stake_currency")
2020-02-25 06:16:37 +00:00
if not self._freqtrade.exchange.get_pair_quote_currency(pair) == stake_currency:
2018-10-09 17:25:43 +00:00
raise RPCException(
2024-05-12 14:51:11 +00:00
f"Wrong pair selected. Only pairs with stake-currency {stake_currency} allowed."
)
def _rpc_force_entry(
self,
pair: str,
price: float | None,
2024-05-12 14:51:11 +00:00
*,
order_type: str | None = None,
2024-05-12 14:51:11 +00:00
order_side: SignalDirection = SignalDirection.LONG,
stake_amount: float | None = None,
enter_tag: str | None = "force_entry",
leverage: float | None = None,
) -> Trade | None:
2022-11-29 17:27:08 +00:00
"""
Handler for forcebuy <asset> <price>
Buys a pair trade at the given or current price
"""
self._force_entry_validations(pair, order_side)
2018-10-09 17:25:43 +00:00
# check if valid pair
# check if pair already has an open pair
trade: Trade | None = Trade.get_trades(
2024-05-12 14:51:11 +00:00
[Trade.is_open.is_(True), Trade.pair == pair]
).first()
is_short = order_side == SignalDirection.SHORT
2018-10-09 17:25:43 +00:00
if trade:
2022-02-13 15:28:49 +00:00
is_short = trade.is_short
if not self._freqtrade.strategy.position_adjustment_enable:
2023-09-09 08:09:37 +00:00
raise RPCException(f"position for {pair} already open - id: {trade.id}")
if trade.has_open_orders:
2024-05-12 14:51:11 +00:00
raise RPCException(
f"position for {pair} already open - id: {trade.id} "
f"and has open order {','.join(trade.open_orders_ids)}"
)
else:
2024-05-12 14:51:11 +00:00
if Trade.get_open_trade_count() >= self._config["max_open_trades"]:
raise RPCException("Maximum number of trades is reached.")
2018-10-09 17:25:43 +00:00
if not stake_amount:
# gen stake amount
stake_amount = self._freqtrade.wallets.get_trade_stake_amount(
2024-05-12 14:51:11 +00:00
pair, self._config["max_open_trades"]
)
2018-10-09 17:25:43 +00:00
# execute buy
2021-11-24 19:11:04 +00:00
if not order_type:
order_type = self._freqtrade.strategy.order_types.get(
2024-05-12 14:51:11 +00:00
"force_entry", self._freqtrade.strategy.order_types["entry"]
)
with self._freqtrade._exit_lock:
2024-05-12 14:51:11 +00:00
if self._freqtrade.execute_entry(
pair,
stake_amount,
price,
ordertype=order_type,
trade=trade,
is_short=is_short,
enter_tag=enter_tag,
leverage_=leverage,
mode="pos_adjust" if trade else "initial",
):
Trade.commit()
trade = Trade.get_trades([Trade.is_open.is_(True), Trade.pair == pair]).first()
return trade
else:
2024-05-12 14:51:11 +00:00
raise RPCException(f"Failed to enter position for {pair}.")
2020-08-04 12:41:22 +00:00
2023-01-31 06:09:03 +00:00
def _rpc_cancel_open_order(self, trade_id: int):
if self._freqtrade.state != State.RUNNING:
2024-05-12 14:51:11 +00:00
raise RPCException("trader is not running")
2023-01-31 06:09:03 +00:00
with self._freqtrade._exit_lock:
# Query for trade
trade = Trade.get_trades(
2024-05-12 14:51:11 +00:00
trade_filter=[
Trade.id == trade_id,
Trade.is_open.is_(True),
]
2023-01-31 06:09:03 +00:00
).first()
if not trade:
2024-05-12 14:51:11 +00:00
logger.warning("cancel_open_order: Invalid trade_id received.")
raise RPCException("Invalid trade_id.")
if not trade.has_open_orders:
2024-05-12 14:51:11 +00:00
logger.warning("cancel_open_order: No open order for trade_id.")
raise RPCException("No open order for trade_id.")
2023-01-31 06:09:03 +00:00
for open_order in trade.open_orders:
try:
order = self._freqtrade.exchange.fetch_order(open_order.order_id, trade.pair)
except ExchangeError as e:
logger.info(f"Cannot query order for {trade} due to {e}.", exc_info=True)
raise RPCException("Order not found.")
2023-06-21 06:02:47 +00:00
self._freqtrade.handle_cancel_order(
2024-05-12 14:51:11 +00:00
order, open_order, trade, CANCEL_REASON["USER_CANCEL"]
)
2023-09-09 08:09:37 +00:00
Trade.commit()
2023-01-31 06:09:03 +00:00
def _rpc_delete(self, trade_id: int) -> dict[str, str | int]:
2020-07-20 04:08:18 +00:00
"""
Handler for delete <id>.
Delete the given trade and close eventually existing open orders.
2020-07-20 04:08:18 +00:00
"""
2021-09-08 06:49:04 +00:00
with self._freqtrade._exit_lock:
c_count = 0
trade = Trade.get_trades(trade_filter=[Trade.id == trade_id]).first()
2020-07-20 04:08:18 +00:00
if not trade:
2024-05-12 14:51:11 +00:00
logger.warning("delete trade: Invalid argument received")
raise RPCException("invalid argument")
2020-07-20 04:08:18 +00:00
# Try cancelling regular order if that exists
2023-09-09 08:09:37 +00:00
for open_order in trade.open_orders:
try:
self._freqtrade.exchange.cancel_order(open_order.order_id, trade.pair)
c_count += 1
2024-05-12 14:51:11 +00:00
except ExchangeError:
2023-09-09 08:09:37 +00:00
pass
# cancel stoploss on exchange orders ...
2024-05-12 14:51:11 +00:00
if (
self._freqtrade.strategy.order_types.get("stoploss_on_exchange")
and trade.has_open_sl_orders
):
for oslo in trade.open_sl_orders:
try:
self._freqtrade.exchange.cancel_stoploss_order(oslo.order_id, trade.pair)
c_count += 1
2024-05-12 14:51:11 +00:00
except ExchangeError:
pass
2020-09-06 12:27:36 +00:00
trade.delete()
2020-07-20 04:08:18 +00:00
self._freqtrade.wallets.update()
return {
2024-05-12 14:51:11 +00:00
"result": "success",
"trade_id": trade_id,
"result_msg": f"Deleted trade {trade_id}. Closed {c_count} open orders.",
"cancel_order_count": c_count,
}
2018-10-09 17:25:43 +00:00
def _rpc_list_custom_data(self, trade_id: int, key: str | None) -> list[dict[str, Any]]:
# Query for trade
trade = Trade.get_trades(trade_filter=[Trade.id == trade_id]).first()
if trade is None:
return []
# Query custom_data
custom_data = []
if key:
data = trade.get_custom_data(key=key)
if data:
custom_data = [data]
else:
custom_data = trade.get_all_custom_data()
return [
{
2024-05-12 14:51:11 +00:00
"id": data_entry.id,
"ft_trade_id": data_entry.ft_trade_id,
"cd_key": data_entry.cd_key,
"cd_type": data_entry.cd_type,
"cd_value": data_entry.cd_value,
"created_at": data_entry.created_at,
"updated_at": data_entry.updated_at,
}
for data_entry in custom_data
]
def _rpc_performance(self) -> list[dict[str, Any]]:
2018-02-13 03:45:59 +00:00
"""
Handler for performance.
Shows a performance statistic from finished trades
"""
pair_rates = Trade.get_overall_performance()
return pair_rates
2018-03-02 15:22:00 +00:00
def _rpc_enter_tag_performance(self, pair: str | None) -> list[dict[str, Any]]:
"""
Handler for buy tag performance.
Shows a performance statistic from finished trades
"""
2021-11-21 09:05:56 +00:00
return Trade.get_enter_tag_performance(pair)
def _rpc_exit_reason_performance(self, pair: str | None) -> list[dict[str, Any]]:
"""
2022-04-03 17:39:13 +00:00
Handler for exit reason performance.
Shows a performance statistic from finished trades
"""
2022-04-03 08:39:35 +00:00
return Trade.get_exit_reason_performance(pair)
def _rpc_mix_tag_performance(self, pair: str | None) -> list[dict[str, Any]]:
"""
2022-04-03 08:41:35 +00:00
Handler for mix tag (enter_tag + exit_reason) performance.
Shows a performance statistic from finished trades
"""
mix_tags = Trade.get_mix_tag_performance(pair)
return mix_tags
def _rpc_count(self) -> dict[str, float]:
2024-05-12 14:51:11 +00:00
"""Returns the number of trades running"""
2018-06-08 22:20:10 +00:00
if self._freqtrade.state != State.RUNNING:
2024-05-12 14:51:11 +00:00
raise RPCException("trader is not running")
2018-03-02 15:22:00 +00:00
trades = Trade.get_open_trades()
return {
2024-05-12 14:51:11 +00:00
"current": len(trades),
"max": (
int(self._freqtrade.config["max_open_trades"])
if self._freqtrade.config["max_open_trades"] != float("inf")
else -1
),
"total_stake": sum((trade.open_rate * trade.amount) for trade in trades),
}
2018-11-10 19:07:09 +00:00
def _rpc_locks(self) -> dict[str, Any]:
2024-05-12 14:51:11 +00:00
"""Returns the current locks"""
2020-10-17 13:15:35 +00:00
2020-10-25 09:54:30 +00:00
locks = PairLocks.get_pair_locks(None)
2024-05-12 14:51:11 +00:00
return {"lock_count": len(locks), "locks": [lock.to_json() for lock in locks]}
2020-10-17 13:15:35 +00:00
2024-05-12 14:51:11 +00:00
def _rpc_delete_lock(
self, lockid: int | None = None, pair: str | None = None
) -> dict[str, Any]:
2024-05-12 14:51:11 +00:00
"""Delete specific lock(s)"""
2023-03-16 05:44:53 +00:00
locks: Sequence[PairLock] = []
2021-03-01 06:51:33 +00:00
if pair:
locks = PairLocks.get_pair_locks(pair)
if lockid:
2023-03-16 05:44:53 +00:00
locks = PairLock.session.scalars(select(PairLock).filter(PairLock.id == lockid)).all()
2021-03-01 06:51:33 +00:00
for lock in locks:
lock.active = False
lock.lock_end_time = datetime.now(timezone.utc)
Trade.commit()
2021-03-01 06:51:33 +00:00
return self._rpc_locks()
def _rpc_add_lock(self, pair: str, until: datetime, reason: str | None, side: str) -> PairLock:
lock = PairLocks.lock_pair(
pair=pair,
until=until,
reason=reason,
side=side,
)
return lock
def _rpc_whitelist(self) -> dict:
2024-05-12 14:51:11 +00:00
"""Returns the currently active whitelist"""
res = {
"method": self._freqtrade.pairlists.name_list,
"length": len(self._freqtrade.active_pair_whitelist),
"whitelist": self._freqtrade.active_pair_whitelist,
}
2018-11-10 19:07:09 +00:00
return res
2019-03-24 15:08:48 +00:00
def _rpc_blacklist_delete(self, delete: list[str]) -> dict:
2024-05-12 14:51:11 +00:00
"""Removes pairs from currently active blacklist"""
errors = {}
for pair in delete:
if pair in self._freqtrade.pairlists.blacklist:
self._freqtrade.pairlists.blacklist.remove(pair)
else:
2024-05-12 14:51:11 +00:00
errors[pair] = {"error_msg": f"Pair {pair} is not in the current blacklist."}
resp = self._rpc_blacklist()
2024-05-12 14:51:11 +00:00
resp["errors"] = errors
return resp
def _rpc_blacklist(self, add: list[str] | None = None) -> dict:
2024-05-12 14:51:11 +00:00
"""Returns the currently active blacklist"""
errors = {}
2019-03-24 15:28:14 +00:00
if add:
for pair in add:
if pair not in self._freqtrade.pairlists.blacklist:
try:
expand_pairlist([pair], self._freqtrade.exchange.get_markets().keys())
self._freqtrade.pairlists.blacklist.append(pair)
except ValueError:
2024-05-12 14:51:11 +00:00
errors[pair] = {"error_msg": f"Pair {pair} is not a valid wildcard."}
else:
2024-05-12 14:51:11 +00:00
errors[pair] = {"error_msg": f"Pair {pair} already in pairlist."}
res = {
"method": self._freqtrade.pairlists.name_list,
"length": len(self._freqtrade.pairlists.blacklist),
"blacklist": self._freqtrade.pairlists.blacklist,
"blacklist_expanded": self._freqtrade.pairlists.expanded_blacklist,
"errors": errors,
}
2019-03-24 15:08:48 +00:00
return res
2019-03-25 09:16:09 +00:00
2020-12-06 18:57:48 +00:00
@staticmethod
def _rpc_get_logs(limit: int | None) -> dict[str, Any]:
"""Returns the last X logs"""
if limit:
buffer = bufferHandler.buffer[-limit:]
else:
buffer = bufferHandler.buffer
2024-05-12 14:51:11 +00:00
records = [
[
format_date(datetime.fromtimestamp(r.created)),
r.created * 1000,
r.name,
r.levelname,
r.message + ("\n" + r.exc_text if r.exc_text else ""),
]
for r in buffer
]
2020-08-27 12:41:31 +00:00
# Log format:
# [logtime-formatted, logepoch, logger-name, loglevel, message \n + exception]
# e.g. ["2020-08-27 11:35:01", 1598520901097.9397,
2020-08-27 12:41:31 +00:00
# "freqtrade.worker", "INFO", "Starting worker develop"]
2024-05-12 14:51:11 +00:00
return {"log_count": len(records), "logs": records}
def _rpc_edge(self) -> list[dict[str, Any]]:
2024-05-12 14:51:11 +00:00
"""Returns information related to Edge"""
2019-03-24 21:36:33 +00:00
if not self._freqtrade.edge:
2024-05-12 14:51:11 +00:00
raise RPCException("Edge is not enabled.")
2019-04-03 12:14:47 +00:00
return self._freqtrade.edge.accepted_pairs()
2020-06-12 17:32:44 +00:00
@staticmethod
def _convert_dataframe_to_dict(
2024-05-12 14:51:11 +00:00
strategy: str,
pair: str,
timeframe: str,
dataframe: DataFrame,
last_analyzed: datetime,
selected_cols: list[str] | None,
) -> dict[str, Any]:
has_content = len(dataframe) != 0
dataframe_columns = list(dataframe.columns)
signals = {
2024-05-12 14:51:11 +00:00
"enter_long": 0,
"exit_long": 0,
"enter_short": 0,
"exit_short": 0,
}
if has_content:
if selected_cols is not None:
# Ensure OHLCV columns are always present
2024-04-28 08:40:54 +00:00
cols_set = set(DEFAULT_DATAFRAME_COLUMNS + list(signals.keys()) + selected_cols)
df_cols = [col for col in dataframe_columns if col in cols_set]
dataframe = dataframe.loc[:, df_cols]
2024-05-12 14:51:11 +00:00
dataframe.loc[:, "__date_ts"] = dataframe.loc[:, "date"].astype(int64) // 1000 // 1000
# Move signal close to separate column when signal for easy plotting
for sig_type in signals.keys():
if sig_type in dataframe.columns:
2024-05-12 14:51:11 +00:00
mask = dataframe[sig_type] == 1
signals[sig_type] = int(mask.sum())
2024-05-12 14:51:11 +00:00
dataframe.loc[mask, f"_{sig_type}_signal_close"] = dataframe.loc[mask, "close"]
# band-aid until this is fixed:
# https://github.com/pandas-dev/pandas/issues/45836
2024-05-12 14:51:11 +00:00
datetime_types = ["datetime", "datetime64", "datetime64[ns, UTC]"]
date_columns = dataframe.select_dtypes(include=datetime_types)
for date_column in date_columns:
# replace NaT with `None`
2022-02-09 05:48:26 +00:00
dataframe[date_column] = dataframe[date_column].astype(object).replace({NaT: None})
dataframe = dataframe.replace({inf: None, -inf: None, nan: None})
res = {
2024-05-12 14:51:11 +00:00
"pair": pair,
"timeframe": timeframe,
"timeframe_ms": timeframe_to_msecs(timeframe),
"strategy": strategy,
"all_columns": dataframe_columns,
"columns": list(dataframe.columns),
"data": dataframe.values.tolist(),
"length": len(dataframe),
"buy_signals": signals["enter_long"], # Deprecated
"sell_signals": signals["exit_long"], # Deprecated
"enter_long_signals": signals["enter_long"],
"exit_long_signals": signals["exit_long"],
"enter_short_signals": signals["enter_short"],
"exit_short_signals": signals["exit_short"],
"last_analyzed": last_analyzed,
"last_analyzed_ts": int(last_analyzed.timestamp()),
"data_start": "",
"data_start_ts": 0,
"data_stop": "",
"data_stop_ts": 0,
2020-07-02 05:10:56 +00:00
}
if has_content:
2024-05-12 14:51:11 +00:00
res.update(
{
"data_start": str(dataframe.iloc[0]["date"]),
"data_start_ts": int(dataframe.iloc[0]["__date_ts"]),
"data_stop": str(dataframe.iloc[-1]["date"]),
"data_stop_ts": int(dataframe.iloc[-1]["__date_ts"]),
}
)
return res
2020-07-02 05:10:56 +00:00
def _rpc_analysed_dataframe(
self, pair: str, timeframe: str, limit: int | None, selected_cols: list[str] | None
) -> dict[str, Any]:
2024-05-12 14:51:11 +00:00
"""Analyzed dataframe in Dict form"""
2020-06-12 17:32:44 +00:00
_data, last_analyzed = self.__rpc_analysed_dataframe_raw(pair, timeframe, limit)
return RPC._convert_dataframe_to_dict(
2024-05-12 14:51:11 +00:00
self._freqtrade.config["strategy"], pair, timeframe, _data, last_analyzed, selected_cols
)
def __rpc_analysed_dataframe_raw(
self, pair: str, timeframe: str, limit: int | None
) -> tuple[DataFrame, datetime]:
"""
Get the dataframe and last analyze from the dataprovider
:param pair: The pair to get
:param timeframe: The timeframe of data to get
:param limit: The amount of candles in the dataframe
"""
2024-05-12 14:51:11 +00:00
_data, last_analyzed = self._freqtrade.dataprovider.get_analyzed_dataframe(pair, timeframe)
_data = _data.copy()
2020-06-15 05:53:23 +00:00
if limit:
_data = _data.iloc[-limit:]
return _data, last_analyzed
def _ws_all_analysed_dataframes(
self, pairlist: list[str], limit: int | None
) -> Generator[dict[str, Any], None, None]:
"""
Get the analysed dataframes of each pair in the pairlist.
2022-12-13 05:46:19 +00:00
If specified, only return the most recent `limit` candles for
each dataframe.
:param pairlist: A list of pairs to get
:param limit: If an integer, limits the size of dataframe
If a list of string date times, only returns those candles
:returns: A generator of dictionaries with the key, dataframe, and last analyzed timestamp
"""
2024-05-12 14:51:11 +00:00
timeframe = self._freqtrade.config["timeframe"]
candle_type = self._freqtrade.config.get("candle_type_def", CandleType.SPOT)
for pair in pairlist:
dataframe, last_analyzed = self.__rpc_analysed_dataframe_raw(pair, timeframe, limit)
2022-09-07 21:08:01 +00:00
2024-05-12 14:51:11 +00:00
yield {"key": (pair, timeframe, candle_type), "df": dataframe, "la": last_analyzed}
2020-07-02 05:10:56 +00:00
def _ws_request_analyzed_df(self, limit: int | None = None, pair: str | None = None):
2024-05-12 14:51:11 +00:00
"""Historical Analyzed Dataframes for WebSocket"""
pairlist = [pair] if pair else self._freqtrade.active_pair_whitelist
return self._ws_all_analysed_dataframes(pairlist, limit)
def _ws_request_whitelist(self):
2024-05-12 14:51:11 +00:00
"""Whitelist data for WebSocket"""
return self._freqtrade.active_pair_whitelist
2022-09-09 05:13:05 +00:00
@staticmethod
2024-05-12 14:51:11 +00:00
def _rpc_analysed_history_full(
config: Config, pair: str, timeframe: str, exchange, selected_cols: list[str] | None
) -> dict[str, Any]:
2024-05-12 14:51:11 +00:00
timerange_parsed = TimeRange.parse_timerange(config.get("timerange"))
2020-07-02 05:10:56 +00:00
from freqtrade.data.converter import trim_dataframe
from freqtrade.data.dataprovider import DataProvider
from freqtrade.resolvers.strategy_resolver import StrategyResolver
strategy = StrategyResolver.load_strategy(config)
startup_candles = strategy.startup_candle_count
2020-07-02 05:10:56 +00:00
_data = load_data(
2023-01-18 05:45:31 +00:00
datadir=config["datadir"],
2020-07-02 05:10:56 +00:00
pairs=[pair],
timeframe=timeframe,
2020-10-02 04:41:28 +00:00
timerange=timerange_parsed,
2024-05-12 14:51:11 +00:00
data_format=config["dataformat_ohlcv"],
candle_type=config.get("candle_type_def", CandleType.SPOT),
startup_candles=startup_candles,
2020-07-02 05:10:56 +00:00
)
if pair not in _data:
raise RPCException(
2024-05-12 14:51:11 +00:00
f"No data for {pair}, {timeframe} in {config.get('timerange')} found."
)
2022-01-22 06:11:59 +00:00
strategy.dp = DataProvider(config, exchange=exchange, pairlists=None)
strategy.ft_bot_start()
2024-05-12 14:51:11 +00:00
df_analyzed = strategy.analyze_ticker(_data[pair], {"pair": pair})
df_analyzed = trim_dataframe(df_analyzed, timerange_parsed, startup_candles=startup_candles)
2020-07-02 05:10:56 +00:00
2024-05-12 14:51:11 +00:00
return RPC._convert_dataframe_to_dict(
strategy.get_strategy_name(),
pair,
timeframe,
df_analyzed.copy(),
dt_now(),
selected_cols,
)
2020-06-23 04:49:53 +00:00
def _rpc_plot_config(self) -> dict[str, Any]:
2024-05-12 14:51:11 +00:00
if (
self._freqtrade.strategy.plot_config
and "subplots" not in self._freqtrade.strategy.plot_config
):
self._freqtrade.strategy.plot_config["subplots"] = {}
2020-06-23 04:49:53 +00:00
return self._freqtrade.strategy.plot_config
@staticmethod
def _rpc_plot_config_with_strategy(config: Config) -> dict[str, Any]:
from freqtrade.resolvers.strategy_resolver import StrategyResolver
2024-05-12 14:51:11 +00:00
strategy = StrategyResolver.load_strategy(config)
# Manually load hyperparameters, as we don't call the bot-start callback.
strategy.ft_load_hyper_params(False)
2024-05-12 14:51:11 +00:00
if strategy.plot_config and "subplots" not in strategy.plot_config:
strategy.plot_config["subplots"] = {}
return strategy.plot_config
2022-09-09 05:13:05 +00:00
@staticmethod
def _rpc_sysinfo() -> dict[str, Any]:
2021-10-06 17:36:28 +00:00
return {
"cpu_pct": psutil.cpu_percent(interval=1, percpu=True),
2024-05-12 14:51:11 +00:00
"ram_pct": psutil.virtual_memory().percent,
2021-10-06 17:36:28 +00:00
}
def health(self) -> dict[str, str | int | None]:
last_p = self._freqtrade.last_process
res: dict[str, None | str | int] = {
"last_process": None,
"last_process_loc": None,
"last_process_ts": None,
"bot_start": None,
"bot_start_loc": None,
"bot_start_ts": None,
"bot_startup": None,
"bot_startup_loc": None,
"bot_startup_ts": None,
}
2023-02-18 23:50:02 +00:00
if last_p is not None:
2024-05-12 14:51:11 +00:00
res.update(
{
"last_process": str(last_p),
"last_process_loc": format_date(last_p.astimezone(tzlocal())),
"last_process_ts": int(last_p.timestamp()),
}
)
if bot_start := KeyValueStore.get_datetime_value(KeyStoreKeys.BOT_START_TIME):
res.update(
{
"bot_start": str(bot_start),
"bot_start_loc": format_date(bot_start.astimezone(tzlocal())),
"bot_start_ts": int(bot_start.timestamp()),
}
)
if bot_startup := KeyValueStore.get_datetime_value(KeyStoreKeys.STARTUP_TIME):
res.update(
{
"bot_startup": str(bot_startup),
"bot_startup_loc": format_date(bot_startup.astimezone(tzlocal())),
"bot_startup_ts": int(bot_startup.timestamp()),
}
)
return res
2023-02-27 22:51:22 +00:00
def _update_market_direction(self, direction: MarketDirection) -> None:
2023-02-19 16:11:21 +00:00
self._freqtrade.strategy.market_direction = direction
2023-02-27 22:51:22 +00:00
def _get_market_direction(self) -> MarketDirection:
return self._freqtrade.strategy.market_direction