2022-08-06 15:51:21 +00:00
|
|
|
import logging
|
2024-10-04 04:50:31 +00:00
|
|
|
from typing import Any
|
2022-08-06 15:51:21 +00:00
|
|
|
|
|
|
|
from lightgbm import LGBMClassifier
|
|
|
|
|
2022-09-10 14:54:13 +00:00
|
|
|
from freqtrade.freqai.base_models.BaseClassifierModel import BaseClassifierModel
|
2022-09-06 18:30:37 +00:00
|
|
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
2022-09-07 16:58:55 +00:00
|
|
|
|
2022-08-06 15:51:21 +00:00
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
2022-08-13 18:07:31 +00:00
|
|
|
class LightGBMClassifier(BaseClassifierModel):
|
2022-08-06 15:51:21 +00:00
|
|
|
"""
|
2023-04-08 10:09:53 +00:00
|
|
|
User created prediction model. The class inherits IFreqaiModel, which
|
|
|
|
means it has full access to all Frequency AI functionality. Typically,
|
|
|
|
users would use this to override the common `fit()`, `train()`, or
|
|
|
|
`predict()` methods to add their custom data handling tools or change
|
|
|
|
various aspects of the training that cannot be configured via the
|
|
|
|
top level config.json file.
|
2022-08-06 15:51:21 +00:00
|
|
|
"""
|
|
|
|
|
2024-10-04 04:50:31 +00:00
|
|
|
def fit(self, data_dictionary: dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
|
2022-08-06 15:51:21 +00:00
|
|
|
"""
|
|
|
|
User sets up the training and test data to fit their desired model here
|
2023-04-08 10:09:53 +00:00
|
|
|
:param data_dictionary: the dictionary holding all data for train, test,
|
|
|
|
labels, weights
|
|
|
|
:param dk: The datakitchen object for the current coin/model
|
2022-08-06 15:51:21 +00:00
|
|
|
"""
|
|
|
|
|
2024-05-12 15:12:20 +00:00
|
|
|
if self.freqai_info.get("data_split_parameters", {}).get("test_size", 0.1) == 0:
|
2022-08-06 15:51:21 +00:00
|
|
|
eval_set = None
|
2022-08-16 09:41:53 +00:00
|
|
|
test_weights = None
|
2022-08-06 15:51:21 +00:00
|
|
|
else:
|
2024-05-12 15:12:20 +00:00
|
|
|
eval_set = [
|
|
|
|
(
|
|
|
|
data_dictionary["test_features"].to_numpy(),
|
|
|
|
data_dictionary["test_labels"].to_numpy()[:, 0],
|
|
|
|
)
|
|
|
|
]
|
2022-08-16 09:41:53 +00:00
|
|
|
test_weights = data_dictionary["test_weights"]
|
|
|
|
X = data_dictionary["train_features"].to_numpy()
|
|
|
|
y = data_dictionary["train_labels"].to_numpy()[:, 0]
|
|
|
|
train_weights = data_dictionary["train_weights"]
|
2022-08-06 15:51:21 +00:00
|
|
|
|
2022-09-07 16:58:55 +00:00
|
|
|
init_model = self.get_init_model(dk.pair)
|
2022-09-06 18:30:37 +00:00
|
|
|
|
2022-08-06 15:51:21 +00:00
|
|
|
model = LGBMClassifier(**self.model_training_parameters)
|
2024-05-12 15:12:20 +00:00
|
|
|
model.fit(
|
|
|
|
X=X,
|
|
|
|
y=y,
|
|
|
|
eval_set=eval_set,
|
|
|
|
sample_weight=train_weights,
|
|
|
|
eval_sample_weight=[test_weights],
|
|
|
|
init_model=init_model,
|
|
|
|
)
|
2022-08-06 15:51:21 +00:00
|
|
|
|
|
|
|
return model
|