freqtrade_origin/freqtrade/plugins/pairlist/PercentVolumeChangePairList.py

320 lines
13 KiB
Python
Raw Normal View History

"""
Change PairList provider
Provides dynamic pair list based on trade change
sorted based on percentage change in volume over a
defined period
"""
2024-07-24 18:34:06 +00:00
import logging
from datetime import timedelta
from typing import Any, Dict, List, Literal
from cachetools import TTLCache
from freqtrade.constants import ListPairsWithTimeframes
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_prev_date
from freqtrade.exchange.types import Tickers
from freqtrade.plugins.pairlist.IPairList import IPairList, PairlistParameter, SupportsBacktesting
from freqtrade.util import dt_now, format_ms_time
logger = logging.getLogger(__name__)
SORT_VALUES = ["rolling_volume_change"]
class PercentVolumeChangePairList(IPairList):
is_pairlist_generator = True
supports_backtesting = SupportsBacktesting.NO
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
if "number_assets" not in self._pairlistconfig:
raise OperationalException(
"`number_assets` not specified. Please check your configuration "
'for "pairlist.config.number_assets"'
)
self._stake_currency = self._config["stake_currency"]
self._number_pairs = self._pairlistconfig["number_assets"]
self._sort_key: Literal["rolling_volume_change"] = self._pairlistconfig.get(
"sort_key", "rolling_volume_change"
)
self._min_value = self._pairlistconfig.get("min_value", 0)
self._max_value = self._pairlistconfig.get("max_value", None)
self._refresh_period = self._pairlistconfig.get("refresh_period", 1800)
self._pair_cache: TTLCache = TTLCache(maxsize=1, ttl=self._refresh_period)
self._lookback_days = self._pairlistconfig.get("lookback_days", 0)
self._lookback_timeframe = self._pairlistconfig.get("lookback_timeframe", "1d")
self._lookback_period = self._pairlistconfig.get("lookback_period", 0)
self._def_candletype = self._config["candle_type_def"]
if (self._lookback_days > 0) & (self._lookback_period > 0):
raise OperationalException(
"Ambiguous configuration: lookback_days and lookback_period both set in pairlist "
"config. Please set lookback_days only or lookback_period and lookback_timeframe "
"and restart the bot."
)
# overwrite lookback timeframe and days when lookback_days is set
if self._lookback_days > 0:
self._lookback_timeframe = "1d"
self._lookback_period = self._lookback_days
# get timeframe in minutes and seconds
self._tf_in_min = timeframe_to_minutes(self._lookback_timeframe)
_tf_in_sec = self._tf_in_min * 60
# whether to use range lookback or not
self._use_range = (self._tf_in_min > 0) & (self._lookback_period > 0)
if self._use_range & (self._refresh_period < _tf_in_sec):
raise OperationalException(
f"Refresh period of {self._refresh_period} seconds is smaller than one "
f"timeframe of {self._lookback_timeframe}. Please adjust refresh_period "
f"to at least {_tf_in_sec} and restart the bot."
)
if not self._use_range and not (
self._exchange.exchange_has("fetchTickers")
and self._exchange.get_option("tickers_have_change")
):
raise OperationalException(
"Exchange does not support dynamic whitelist in this configuration. "
"Please edit your config and either remove PercentVolumeChangePairList, "
"or switch to using candles. and restart the bot."
)
if not self._validate_keys(self._sort_key):
raise OperationalException(f"key {self._sort_key} not in {SORT_VALUES}")
candle_limit = self._exchange.ohlcv_candle_limit(
self._lookback_timeframe, self._config["candle_type_def"]
)
if self._lookback_period < 4:
raise OperationalException("ChangeFilter requires lookback_period to be >= 4")
self.log_once(f"Candle limit is {candle_limit}", logger.info)
if self._lookback_period > candle_limit:
raise OperationalException(
"ChangeFilter requires lookback_period to not "
f"exceed exchange max request size ({candle_limit})"
)
@property
def needstickers(self) -> bool:
"""
Boolean property defining if tickers are necessary.
If no Pairlist requires tickers, an empty Dict is passed
as tickers argument to filter_pairlist
"""
return not self._use_range
def _validate_keys(self, key):
return key in SORT_VALUES
def short_desc(self) -> str:
"""
Short whitelist method description - used for startup-messages
"""
2024-07-24 18:34:06 +00:00
return (
f"{self.name} - top {self._pairlistconfig['number_assets']} percent "
f"volume change pairs."
)
@staticmethod
def description() -> str:
return "Provides dynamic pair list based on percentage volume change."
@staticmethod
def available_parameters() -> Dict[str, PairlistParameter]:
return {
"number_assets": {
"type": "number",
"default": 30,
"description": "Number of assets",
"help": "Number of assets to use from the pairlist",
},
"sort_key": {
"type": "option",
"default": "rolling_volume_change",
"options": SORT_VALUES,
"description": "Sort key",
"help": "Sort key to use for sorting the pairlist.",
},
"min_value": {
"type": "number",
"default": 0,
"description": "Minimum value",
"help": "Minimum value to use for filtering the pairlist.",
},
"max_value": {
"type": "number",
"default": None,
"description": "Maximum value",
"help": "Maximum value to use for filtering the pairlist.",
},
"refresh_period": {
"type": "number",
"default": 1800,
"description": "Refresh period",
"help": "Refresh period in seconds",
},
"lookback_days": {
"type": "number",
"default": 0,
"description": "Lookback Days",
"help": "Number of days to look back at.",
},
"lookback_timeframe": {
"type": "string",
"default": "1d",
"description": "Lookback Timeframe",
"help": "Timeframe to use for lookback.",
},
"lookback_period": {
"type": "number",
"default": 0,
"description": "Lookback Period",
"help": "Number of periods to look back at.",
},
}
def gen_pairlist(self, tickers: Tickers) -> List[str]:
"""
Generate the pairlist
:param tickers: Tickers (from exchange.get_tickers). May be cached.
:return: List of pairs
"""
# Generate dynamic whitelist
# Must always run if this pairlist is not the first in the list.
pairlist = self._pair_cache.get("pairlist")
if pairlist:
# Item found - no refresh necessary
return pairlist.copy()
else:
# Use fresh pairlist
# Check if pair quote currency equals to the stake currency.
_pairlist = [
k
for k in self._exchange.get_markets(
quote_currencies=[self._stake_currency], tradable_only=True, active_only=True
).keys()
]
# No point in testing for blacklisted pairs...
_pairlist = self.verify_blacklist(_pairlist, logger.info)
if not self._use_range:
filtered_tickers = [
v
for k, v in tickers.items()
if (
self._exchange.get_pair_quote_currency(k) == self._stake_currency
and (self._use_range or v.get(self._sort_key) is not None)
and v["symbol"] in _pairlist
)
]
pairlist = [s["symbol"] for s in filtered_tickers]
else:
pairlist = _pairlist
pairlist = self.filter_pairlist(pairlist, tickers)
self._pair_cache["pairlist"] = pairlist.copy()
return pairlist
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]:
"""
Filters and sorts pairlist and returns the whitelist again.
Called on each bot iteration - please use internal caching if necessary
:param pairlist: pairlist to filter or sort
:param tickers: Tickers (from exchange.get_tickers). May be cached.
:return: new whitelist
"""
self.log_once(f"Filter ticker is self use range {pairlist}", logger.warning)
if self._use_range:
filtered_tickers: List[Dict[str, Any]] = [{"symbol": k} for k in pairlist]
# get lookback period in ms, for exchange ohlcv fetch
since_ms = (
int(
timeframe_to_prev_date(
self._lookback_timeframe,
dt_now()
+ timedelta(
minutes=-(self._lookback_period * self._tf_in_min) - self._tf_in_min
),
).timestamp()
)
* 1000
)
to_ms = (
int(
timeframe_to_prev_date(
self._lookback_timeframe, dt_now() - timedelta(minutes=self._tf_in_min)
).timestamp()
)
* 1000
)
# todo: utc date output for starting date
self.log_once(
f"Using change range of {self._lookback_period} candles, timeframe: "
f"{self._lookback_timeframe}, starting from {format_ms_time(since_ms)} "
f"till {format_ms_time(to_ms)}",
logger.info,
)
needed_pairs: ListPairsWithTimeframes = [
(p, self._lookback_timeframe, self._def_candletype)
for p in [s["symbol"] for s in filtered_tickers]
if p not in self._pair_cache
]
candles = self._exchange.refresh_ohlcv_with_cache(needed_pairs, since_ms)
for i, p in enumerate(filtered_tickers):
pair_candles = (
candles[(p["symbol"], self._lookback_timeframe, self._def_candletype)]
if (p["symbol"], self._lookback_timeframe, self._def_candletype) in candles
else None
)
# in case of candle data calculate typical price and change for candle
if pair_candles is not None and not pair_candles.empty:
pair_candles["rolling_volume_sum"] = (
pair_candles["volume"].rolling(window=self._lookback_period).sum()
)
pair_candles["rolling_volume_change"] = (
pair_candles["rolling_volume_sum"].pct_change() * 100
)
# ensure that a rolling sum over the lookback_period is built
# if pair_candles contains more candles than lookback_period
rolling_volume_change = pair_candles["rolling_volume_change"].fillna(0).iloc[-1]
# replace change with a range change sum calculated above
filtered_tickers[i]["rolling_volume_change"] = rolling_volume_change
self.log_once(f"ticker {filtered_tickers[i]}", logger.info)
else:
filtered_tickers[i]["rolling_volume_change"] = 0
else:
filtered_tickers = [v for k, v in tickers.items() if k in pairlist]
filtered_tickers = [v for v in filtered_tickers if v[self._sort_key] > self._min_value]
if self._max_value is not None:
filtered_tickers = [v for v in filtered_tickers if v[self._sort_key] < self._max_value]
sorted_tickers = sorted(filtered_tickers, reverse=True, key=lambda t: t[self._sort_key])
self.log_once(f"Sorted Tickers {sorted_tickers}", logger.info)
# Validate whitelist to only have active market pairs
pairs = self._whitelist_for_active_markets([s["symbol"] for s in sorted_tickers])
pairs = self.verify_blacklist(pairs, logmethod=logger.info)
# Limit pairlist to the requested number of pairs
pairs = pairs[: self._number_pairs]
return pairs