2022-05-03 08:14:17 +00:00
|
|
|
|
|
|
|
import os
|
|
|
|
import numpy as np
|
|
|
|
import pandas as pd
|
|
|
|
from pandas import DataFrame
|
|
|
|
import shutil
|
|
|
|
import gc
|
|
|
|
from typing import Any, Dict, Optional, Tuple
|
|
|
|
from abc import ABC
|
|
|
|
from freqtrade.freqai.data_handler import DataHandler
|
|
|
|
|
|
|
|
pd.options.mode.chained_assignment = None
|
|
|
|
|
|
|
|
class IFreqaiModel(ABC):
|
|
|
|
"""
|
|
|
|
Class containing all tools for training and prediction in the strategy.
|
|
|
|
User models should inherit from this class as shown in
|
|
|
|
templates/ExamplePredictionModel.py where the user overrides
|
|
|
|
train(), predict(), fit(), and make_labels().
|
2022-05-03 08:28:13 +00:00
|
|
|
Author: Robert Caulk, rob.caulk@gmail.com
|
2022-05-03 08:14:17 +00:00
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, config: Dict[str, Any]) -> None:
|
|
|
|
|
|
|
|
self.config = config
|
|
|
|
self.freqai_info = config['freqai']
|
|
|
|
self.data_split_parameters = config['freqai']['data_split_parameters']
|
|
|
|
self.model_training_parameters = config['freqai']['model_training_parameters']
|
|
|
|
self.feature_parameters = config['freqai']['feature_parameters']
|
|
|
|
self.full_path = (str(config['user_data_dir'])+
|
|
|
|
"/models/"+self.freqai_info['full_timerange']+
|
|
|
|
'-'+self.freqai_info['identifier'])
|
|
|
|
self.metadata = {}
|
|
|
|
self.data = {}
|
|
|
|
self.time_last_trained = None
|
|
|
|
self.current_time = None
|
|
|
|
self.model = None
|
|
|
|
self.predictions = None
|
|
|
|
|
|
|
|
if not os.path.exists(self.full_path):
|
|
|
|
os.mkdir(self.full_path)
|
|
|
|
shutil.copy(self.config['config_files'][0],self.full_path+"/"+self.config['config_files'][0])
|
|
|
|
|
|
|
|
def start(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
|
|
"""
|
|
|
|
Entry point to the FreqaiModel, it will train a new model if
|
|
|
|
necesssary before making the prediction.
|
|
|
|
The backtesting and training paradigm is a sliding training window
|
|
|
|
with a following backtest window. Both windows slide according to the
|
|
|
|
length of the backtest window. This function is not intended to be
|
|
|
|
overridden by children of IFreqaiModel, but technically, it can be
|
|
|
|
if the user wishes to make deeper changes to the sliding window
|
|
|
|
logic.
|
|
|
|
:params:
|
|
|
|
:dataframe: Full dataframe coming from strategy - it contains entire
|
|
|
|
backtesting timerange + additional historical data necessary to train
|
|
|
|
the model.
|
|
|
|
:metadata: pair metadataa coming from strategy.
|
|
|
|
"""
|
|
|
|
self.pair = metadata['pair']
|
|
|
|
self.dh = DataHandler(self.config, dataframe, self.data)
|
|
|
|
|
|
|
|
print('going to train',len(self.dh.training_timeranges),
|
|
|
|
'timeranges:',self.dh.training_timeranges)
|
|
|
|
|
|
|
|
# Loop enforcing the sliding window training/backtesting paragigm
|
|
|
|
# tr_train is the training time range e.g. 1 historical month
|
|
|
|
# tr_backtest is the backtesting time range e.g. the week directly
|
|
|
|
# following tr_train. Both of these windows slide through the
|
|
|
|
# entire backtest
|
|
|
|
for tr_train, tr_backtest in zip(self.dh.training_timeranges,
|
|
|
|
self.dh.backtesting_timeranges):
|
|
|
|
gc.collect()
|
|
|
|
#self.config['timerange'] = tr_train
|
|
|
|
self.dh.data = {} # clean the pair specific data between models
|
|
|
|
self.freqai_info['training_timerange'] = tr_train
|
|
|
|
dataframe_train = self.dh.slice_dataframe(tr_train, dataframe)
|
|
|
|
dataframe_backtest = self.dh.slice_dataframe(tr_backtest, dataframe)
|
|
|
|
print("training",self.pair,"for",tr_train)
|
|
|
|
self.dh.model_path = self.full_path+"/"+ 'sub-train'+'-'+str(tr_train)+'/'
|
|
|
|
if not self.model_exists(self.pair, training_timerange=tr_train):
|
|
|
|
self.model = self.train(dataframe_train, metadata)
|
|
|
|
self.dh.save_data(self.model)
|
|
|
|
else:
|
|
|
|
self.model = self.dh.load_data(self.dh.model_path)
|
|
|
|
|
|
|
|
preds, do_preds = self.predict(dataframe_backtest)
|
|
|
|
|
|
|
|
self.dh.append_predictions(preds,do_preds,len(dataframe_backtest))
|
|
|
|
|
|
|
|
self.dh.fill_predictions(len(dataframe))
|
|
|
|
|
|
|
|
return self.dh.predictions, self.dh.do_predict, self.dh.target_mean, self.dh.target_std
|
|
|
|
|
|
|
|
def make_labels(self, dataframe: DataFrame) -> DataFrame:
|
|
|
|
"""
|
|
|
|
User defines the labels here (target values).
|
|
|
|
:params:
|
|
|
|
:dataframe: the full dataframe for the present training period
|
|
|
|
"""
|
|
|
|
|
|
|
|
return dataframe
|
|
|
|
|
2022-05-03 08:28:13 +00:00
|
|
|
def train(self, unfiltered_dataframe: DataFrame, metadata: dict) -> Any:
|
2022-05-03 08:14:17 +00:00
|
|
|
"""
|
|
|
|
Filter the training data and train a model to it. Train makes heavy use of the datahandler
|
2022-05-03 08:28:13 +00:00
|
|
|
for storing, saving, loading, and analyzing the data.
|
2022-05-03 08:14:17 +00:00
|
|
|
:params:
|
|
|
|
:unfiltered_dataframe: Full dataframe for the current training period
|
|
|
|
:metadata: pair metadata from strategy.
|
|
|
|
:returns:
|
|
|
|
:model: Trained model which can be used to inference (self.predict)
|
|
|
|
"""
|
|
|
|
|
2022-05-03 08:28:13 +00:00
|
|
|
return Any
|
2022-05-03 08:14:17 +00:00
|
|
|
|
|
|
|
def fit(self) -> Any:
|
|
|
|
"""
|
|
|
|
Most regressors use the same function names and arguments e.g. user
|
|
|
|
can drop in LGBMRegressor in place of CatBoostRegressor and all data
|
|
|
|
management will be properly handled by Freqai.
|
|
|
|
:params:
|
|
|
|
:data_dictionary: the dictionary constructed by DataHandler to hold
|
|
|
|
all the training and test data/labels.
|
|
|
|
"""
|
|
|
|
|
|
|
|
return None
|
|
|
|
|
|
|
|
def predict(self) -> Optional[Tuple[DataFrame, DataFrame]]:
|
|
|
|
"""
|
|
|
|
Filter the prediction features data and predict with it.
|
|
|
|
:param: unfiltered_dataframe: Full dataframe for the current backtest period.
|
|
|
|
:return:
|
|
|
|
:predictions: np.array of predictions
|
|
|
|
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
|
|
|
|
data (NaNs) or felt uncertain about data (PCA and DI index)
|
|
|
|
"""
|
|
|
|
|
|
|
|
return None
|
|
|
|
|
|
|
|
def model_exists(self, pair: str, training_timerange: str = None) -> bool:
|
|
|
|
"""
|
|
|
|
Given a pair and path, check if a model already exists
|
|
|
|
:param pair: pair e.g. BTC/USD
|
|
|
|
:param path: path to model
|
|
|
|
"""
|
|
|
|
coin,_ = pair.split('/')
|
2022-05-03 08:36:44 +00:00
|
|
|
self.dh.model_filename = f"cb_"+coin.lower()+"_"+training_timerange
|
2022-05-03 08:14:17 +00:00
|
|
|
file_exists = os.path.isfile(self.dh.model_path+
|
|
|
|
self.dh.model_filename+"_model.joblib")
|
|
|
|
if file_exists:
|
|
|
|
print("Found model at", self.dh.model_path+self.dh.model_filename)
|
|
|
|
else: print("Could not find model at",
|
|
|
|
self.dh.model_path+self.dh.model_filename)
|
|
|
|
return file_exists
|