freqtrade_origin/freqtrade/tests/optimize/__init__.py

46 lines
1.2 KiB
Python
Raw Normal View History

from typing import NamedTuple, List
import arrow
from pandas import DataFrame
from freqtrade.strategy.interface import SellType
ticker_start_time = arrow.get(2018, 10, 3)
ticker_interval_in_minute = 60
class BTrade(NamedTuple):
"""
Minimalistic Trade result used for functional backtesting
"""
sell_reason: SellType
open_tick: int
close_tick: int
class BTContainer(NamedTuple):
"""
Minimal BacktestContainer defining Backtest inputs and results.
"""
data: List[float]
stop_loss: float
roi: float
trades: List[BTrade]
profit_perc: float
def _get_frame_time_from_offset(offset):
return ticker_start_time.shift(
2018-11-10 16:20:11 +00:00
minutes=(offset * ticker_interval_in_minute)).datetime.replace(tzinfo=None)
def _build_backtest_dataframe(ticker_with_signals):
columns = ['date', 'open', 'high', 'low', 'close', 'volume', 'buy', 'sell']
frame = DataFrame.from_records(ticker_with_signals, columns=columns)
frame['date'] = frame['date'].apply(_get_frame_time_from_offset)
# Ensure floats are in place
for column in ['open', 'high', 'low', 'close', 'volume']:
frame[column] = frame[column].astype('float64')
return frame