2019-07-16 04:45:13 +00:00
|
|
|
"""
|
2019-07-23 15:51:24 +00:00
|
|
|
SharpeHyperOptLoss
|
2019-07-16 04:45:13 +00:00
|
|
|
|
2019-07-23 15:51:24 +00:00
|
|
|
This module defines the alternative HyperOptLoss class which can be used for
|
|
|
|
Hyperoptimization.
|
|
|
|
"""
|
2024-05-12 15:13:50 +00:00
|
|
|
|
2019-07-16 04:45:13 +00:00
|
|
|
from datetime import datetime
|
|
|
|
|
2020-09-28 17:39:41 +00:00
|
|
|
from pandas import DataFrame
|
2019-07-16 04:45:13 +00:00
|
|
|
|
2023-01-07 00:14:56 +00:00
|
|
|
from freqtrade.constants import Config
|
|
|
|
from freqtrade.data.metrics import calculate_sharpe
|
2023-01-07 00:50:05 +00:00
|
|
|
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
2019-07-16 04:45:13 +00:00
|
|
|
|
2023-01-07 00:46:46 +00:00
|
|
|
|
2019-07-16 04:45:13 +00:00
|
|
|
class SharpeHyperOptLoss(IHyperOptLoss):
|
|
|
|
"""
|
2019-07-23 15:51:24 +00:00
|
|
|
Defines the loss function for hyperopt.
|
|
|
|
|
|
|
|
This implementation uses the Sharpe Ratio calculation.
|
2019-07-16 04:45:13 +00:00
|
|
|
"""
|
|
|
|
|
|
|
|
@staticmethod
|
2024-05-12 15:13:50 +00:00
|
|
|
def hyperopt_loss_function(
|
|
|
|
results: DataFrame,
|
|
|
|
trade_count: int,
|
|
|
|
min_date: datetime,
|
|
|
|
max_date: datetime,
|
|
|
|
config: Config,
|
|
|
|
*args,
|
|
|
|
**kwargs,
|
|
|
|
) -> float:
|
2019-07-16 04:45:13 +00:00
|
|
|
"""
|
2019-07-23 15:51:24 +00:00
|
|
|
Objective function, returns smaller number for more optimal results.
|
|
|
|
|
|
|
|
Uses Sharpe Ratio calculation.
|
2019-07-16 04:45:13 +00:00
|
|
|
"""
|
2024-05-12 15:13:50 +00:00
|
|
|
starting_balance = config["dry_run_wallet"]
|
2023-01-06 23:56:40 +00:00
|
|
|
sharp_ratio = calculate_sharpe(results, min_date, max_date, starting_balance)
|
2020-02-02 07:47:33 +00:00
|
|
|
# print(expected_returns_mean, up_stdev, sharp_ratio)
|
2019-07-16 04:45:13 +00:00
|
|
|
return -sharp_ratio
|