mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 18:23:55 +00:00
53 lines
1.5 KiB
Python
53 lines
1.5 KiB
Python
|
"""
|
||
|
CalmarHyperOptLoss
|
||
|
|
||
|
This module defines the alternative HyperOptLoss class which can be used for
|
||
|
Hyperoptimization.
|
||
|
"""
|
||
|
from datetime import datetime
|
||
|
|
||
|
import numpy as np
|
||
|
from pandas import DataFrame
|
||
|
|
||
|
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||
|
from freqtrade.data.btanalysis import calculate_max_drawdown
|
||
|
|
||
|
|
||
|
class CalmarHyperOptLoss(IHyperOptLoss):
|
||
|
"""
|
||
|
Defines the loss function for hyperopt.
|
||
|
|
||
|
This implementation uses the Calmar Ratio calculation.
|
||
|
"""
|
||
|
|
||
|
@staticmethod
|
||
|
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
||
|
min_date: datetime, max_date: datetime,
|
||
|
*args, **kwargs) -> float:
|
||
|
"""
|
||
|
Objective function, returns smaller number for more optimal results.
|
||
|
|
||
|
Uses Calmar Ratio calculation.
|
||
|
"""
|
||
|
total_profit = results["profit_ratio"]
|
||
|
days_period = (max_date - min_date).days
|
||
|
|
||
|
# adding slippage of 0.1% per trade
|
||
|
total_profit = total_profit - 0.0005
|
||
|
expected_returns_mean = total_profit.sum() / days_period
|
||
|
|
||
|
# calculate max drawdown
|
||
|
try:
|
||
|
_, _, _, high_val, low_val = calculate_max_drawdown(results)
|
||
|
max_drawdown = -(high_val - low_val) / high_val
|
||
|
except ValueError:
|
||
|
max_drawdown = 0
|
||
|
|
||
|
if max_drawdown > 0:
|
||
|
calmar_ratio = expected_returns_mean / max_drawdown * np.sqrt(365)
|
||
|
else:
|
||
|
calmar_ratio = -20.
|
||
|
|
||
|
# print(calmar_ratio)
|
||
|
return -calmar_ratio
|