2022-07-22 10:40:51 +00:00
|
|
|
import logging
|
|
|
|
from typing import Any, Dict
|
|
|
|
|
|
|
|
from lightgbm import LGBMRegressor
|
|
|
|
|
2022-09-10 14:54:13 +00:00
|
|
|
from freqtrade.freqai.base_models.BaseRegressionModel import BaseRegressionModel
|
|
|
|
from freqtrade.freqai.base_models.FreqaiMultiOutputRegressor import FreqaiMultiOutputRegressor
|
2022-09-06 18:30:37 +00:00
|
|
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
2022-09-07 16:58:55 +00:00
|
|
|
|
2022-07-22 10:40:51 +00:00
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
2022-07-09 08:13:33 +00:00
|
|
|
class LightGBMRegressorMultiTarget(BaseRegressionModel):
|
2022-07-22 10:40:51 +00:00
|
|
|
"""
|
2023-04-08 10:09:53 +00:00
|
|
|
User created prediction model. The class inherits IFreqaiModel, which
|
|
|
|
means it has full access to all Frequency AI functionality. Typically,
|
|
|
|
users would use this to override the common `fit()`, `train()`, or
|
|
|
|
`predict()` methods to add their custom data handling tools or change
|
|
|
|
various aspects of the training that cannot be configured via the
|
|
|
|
top level config.json file.
|
2022-07-22 10:40:51 +00:00
|
|
|
"""
|
|
|
|
|
2022-09-07 16:58:55 +00:00
|
|
|
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
|
2022-07-22 10:40:51 +00:00
|
|
|
"""
|
|
|
|
User sets up the training and test data to fit their desired model here
|
2023-04-08 10:09:53 +00:00
|
|
|
:param data_dictionary: the dictionary holding all data for train, test,
|
|
|
|
labels, weights
|
|
|
|
:param dk: The datakitchen object for the current coin/model
|
2022-07-22 10:40:51 +00:00
|
|
|
"""
|
|
|
|
|
|
|
|
lgb = LGBMRegressor(**self.model_training_parameters)
|
|
|
|
|
|
|
|
X = data_dictionary["train_features"]
|
|
|
|
y = data_dictionary["train_labels"]
|
|
|
|
sample_weight = data_dictionary["train_weights"]
|
|
|
|
|
2022-09-10 14:54:13 +00:00
|
|
|
eval_weights = None
|
|
|
|
eval_sets = [None] * y.shape[1]
|
2022-09-06 18:30:37 +00:00
|
|
|
|
2024-05-12 15:12:20 +00:00
|
|
|
if self.freqai_info.get("data_split_parameters", {}).get("test_size", 0.1) != 0:
|
2022-09-10 14:54:13 +00:00
|
|
|
eval_weights = [data_dictionary["test_weights"]]
|
2024-05-12 15:12:20 +00:00
|
|
|
eval_sets = [(None, None)] * data_dictionary["test_labels"].shape[1] # type: ignore
|
|
|
|
for i in range(data_dictionary["test_labels"].shape[1]):
|
2024-05-12 16:02:42 +00:00
|
|
|
eval_sets[i] = [ # type: ignore
|
|
|
|
(
|
2024-05-12 15:12:20 +00:00
|
|
|
data_dictionary["test_features"],
|
|
|
|
data_dictionary["test_labels"].iloc[:, i],
|
|
|
|
)
|
|
|
|
]
|
2022-09-10 14:54:13 +00:00
|
|
|
|
|
|
|
init_model = self.get_init_model(dk.pair)
|
|
|
|
if init_model:
|
|
|
|
init_models = init_model.estimators_
|
|
|
|
else:
|
|
|
|
init_models = [None] * y.shape[1]
|
|
|
|
|
|
|
|
fit_params = []
|
|
|
|
for i in range(len(eval_sets)):
|
|
|
|
fit_params.append(
|
2024-05-12 15:12:20 +00:00
|
|
|
{
|
|
|
|
"eval_set": eval_sets[i],
|
|
|
|
"eval_sample_weight": eval_weights,
|
|
|
|
"init_model": init_models[i],
|
|
|
|
}
|
|
|
|
)
|
2022-09-10 14:54:13 +00:00
|
|
|
|
|
|
|
model = FreqaiMultiOutputRegressor(estimator=lgb)
|
2024-05-12 15:12:20 +00:00
|
|
|
thread_training = self.freqai_info.get("multitarget_parallel_training", False)
|
2022-09-10 20:16:49 +00:00
|
|
|
if thread_training:
|
|
|
|
model.n_jobs = y.shape[1]
|
2022-09-10 14:54:13 +00:00
|
|
|
model.fit(X=X, y=y, sample_weight=sample_weight, fit_params=fit_params)
|
|
|
|
|
2022-07-22 10:40:51 +00:00
|
|
|
return model
|