2018-01-12 09:55:49 +00:00
|
|
|
#!/usr/bin/env python3
|
2018-03-05 04:21:49 +00:00
|
|
|
"""
|
|
|
|
Script to display profits
|
|
|
|
|
2019-06-29 18:07:25 +00:00
|
|
|
Use `python plot_profit.py --help` to display the command line arguments
|
2018-03-05 04:21:49 +00:00
|
|
|
"""
|
2018-03-25 19:37:14 +00:00
|
|
|
import logging
|
2018-01-12 09:55:49 +00:00
|
|
|
import sys
|
2018-12-15 12:54:35 +00:00
|
|
|
from pathlib import Path
|
2019-06-30 07:28:49 +00:00
|
|
|
from typing import Any, Dict, List
|
2018-01-12 09:55:49 +00:00
|
|
|
|
2019-06-29 18:52:33 +00:00
|
|
|
import pandas as pd
|
2019-03-23 18:18:10 +00:00
|
|
|
import plotly.graph_objs as go
|
2018-01-28 09:51:26 +00:00
|
|
|
from plotly import tools
|
|
|
|
|
2019-06-29 18:52:33 +00:00
|
|
|
from freqtrade.arguments import ARGS_PLOT_PROFIT, Arguments
|
2018-12-15 12:54:35 +00:00
|
|
|
from freqtrade.data import history
|
2019-06-29 18:52:33 +00:00
|
|
|
from freqtrade.data.btanalysis import create_cum_profit, load_trades
|
2019-06-30 07:28:49 +00:00
|
|
|
from freqtrade.optimize import setup_configuration
|
|
|
|
from freqtrade.plot.plotting import store_plot_file
|
|
|
|
from freqtrade.resolvers import ExchangeResolver
|
2018-12-25 13:23:59 +00:00
|
|
|
from freqtrade.state import RunMode
|
2018-03-05 04:21:49 +00:00
|
|
|
|
2018-03-25 19:37:14 +00:00
|
|
|
logger = logging.getLogger(__name__)
|
2018-01-12 09:55:49 +00:00
|
|
|
|
2018-05-14 05:08:40 +00:00
|
|
|
|
2019-06-30 07:28:49 +00:00
|
|
|
def plot_profit(config: Dict[str, Any]) -> None:
|
2018-01-12 09:55:49 +00:00
|
|
|
"""
|
|
|
|
Plots the total profit for all pairs.
|
|
|
|
Note, the profit calculation isn't realistic.
|
|
|
|
But should be somewhat proportional, and therefor useful
|
|
|
|
in helping out to find a good algorithm.
|
|
|
|
"""
|
|
|
|
|
2019-06-30 07:28:49 +00:00
|
|
|
exchange = ExchangeResolver(config.get('exchange', {}).get('name'), config).exchange
|
2018-01-23 05:17:54 +00:00
|
|
|
|
2018-03-05 04:21:49 +00:00
|
|
|
# Take pairs from the cli otherwise switch to the pair in the config file
|
2019-06-30 07:28:49 +00:00
|
|
|
if "pairs" in config:
|
|
|
|
pairs = config["pairs"].split(',')
|
2018-03-05 04:21:49 +00:00
|
|
|
else:
|
2019-06-30 07:28:49 +00:00
|
|
|
pairs = config["exchange"]["pair_whitelist"]
|
2019-06-29 18:52:33 +00:00
|
|
|
|
2019-06-30 07:28:49 +00:00
|
|
|
# We need to use the same pairs and the same ticker_interval
|
|
|
|
# as used in backtesting / trading
|
|
|
|
# to match the tickerdata against the results
|
|
|
|
timerange = Arguments.parse_timerange(config["timerange"])
|
2018-03-05 04:21:49 +00:00
|
|
|
|
2018-12-13 05:34:37 +00:00
|
|
|
tickers = history.load_data(
|
2019-06-30 07:28:49 +00:00
|
|
|
datadir=Path(str(config.get("datadir"))),
|
2018-03-05 04:21:49 +00:00
|
|
|
pairs=pairs,
|
2019-06-30 07:28:49 +00:00
|
|
|
ticker_interval=config['ticker_interval'],
|
|
|
|
refresh_pairs=config.get('refresh_pairs', False),
|
|
|
|
timerange=timerange,
|
|
|
|
exchange=exchange,
|
|
|
|
live=config.get("live", False),
|
2018-03-05 04:21:49 +00:00
|
|
|
)
|
2018-01-12 09:55:49 +00:00
|
|
|
|
2019-06-30 07:28:49 +00:00
|
|
|
# Load the profits results
|
|
|
|
trades = load_trades(config)
|
|
|
|
|
|
|
|
trades = trades[trades['pair'].isin(pairs)]
|
|
|
|
|
2019-06-29 18:52:33 +00:00
|
|
|
# Create an average close price of all the pairs that were involved.
|
|
|
|
# this could be useful to gauge the overall market trend
|
2018-01-12 09:55:49 +00:00
|
|
|
|
2019-06-29 18:52:33 +00:00
|
|
|
# Combine close-values for all pairs, rename columns to "pair"
|
|
|
|
df_comb = pd.concat([tickers[pair].set_index('date').rename(
|
|
|
|
{'close': pair}, axis=1)[pair] for pair in tickers], axis=1)
|
|
|
|
df_comb['mean'] = df_comb.mean(axis=1)
|
2018-01-12 09:55:49 +00:00
|
|
|
|
2019-06-29 18:52:33 +00:00
|
|
|
# Add combined cumulative profit
|
|
|
|
df_comb = create_cum_profit(df_comb, trades, 'cum_profit')
|
2018-01-12 09:55:49 +00:00
|
|
|
|
2019-06-29 18:52:33 +00:00
|
|
|
# Plot the pairs average close prices, and total profit growth
|
2018-01-28 09:51:26 +00:00
|
|
|
avgclose = go.Scattergl(
|
2019-06-29 18:52:33 +00:00
|
|
|
x=df_comb.index,
|
|
|
|
y=df_comb['mean'],
|
2018-01-28 09:51:26 +00:00
|
|
|
name='Avg close price',
|
|
|
|
)
|
2018-03-05 04:21:49 +00:00
|
|
|
|
2018-01-28 09:51:26 +00:00
|
|
|
profit = go.Scattergl(
|
2019-06-29 18:52:33 +00:00
|
|
|
x=df_comb.index,
|
|
|
|
y=df_comb['cum_profit'],
|
2018-01-28 09:51:26 +00:00
|
|
|
name='Profit',
|
|
|
|
)
|
|
|
|
|
|
|
|
fig = tools.make_subplots(rows=3, cols=1, shared_xaxes=True, row_width=[1, 1, 1])
|
2018-01-21 12:44:30 +00:00
|
|
|
|
2018-01-28 09:51:26 +00:00
|
|
|
fig.append_trace(avgclose, 1, 1)
|
|
|
|
fig.append_trace(profit, 2, 1)
|
2018-01-12 09:55:49 +00:00
|
|
|
|
|
|
|
for pair in pairs:
|
2019-06-29 18:52:33 +00:00
|
|
|
profit_col = f'cum_profit_{pair}'
|
|
|
|
df_comb = create_cum_profit(df_comb, trades[trades['pair'] == pair], profit_col)
|
|
|
|
|
2018-01-28 09:51:26 +00:00
|
|
|
pair_profit = go.Scattergl(
|
2019-06-29 18:52:33 +00:00
|
|
|
x=df_comb.index,
|
|
|
|
y=df_comb[profit_col],
|
|
|
|
name=f"Profit {pair}",
|
2018-01-28 09:51:26 +00:00
|
|
|
)
|
|
|
|
fig.append_trace(pair_profit, 3, 1)
|
|
|
|
|
2019-06-30 07:28:49 +00:00
|
|
|
store_plot_file(fig,
|
2019-06-29 18:52:33 +00:00
|
|
|
filename='freqtrade-profit-plot.html',
|
|
|
|
auto_open=True)
|
2018-03-05 04:21:49 +00:00
|
|
|
|
2018-03-05 04:24:01 +00:00
|
|
|
|
2019-06-30 07:28:49 +00:00
|
|
|
def plot_parse_args(args: List[str]) -> Dict[str, Any]:
|
2018-03-05 04:21:49 +00:00
|
|
|
"""
|
|
|
|
Parse args passed to the script
|
|
|
|
:param args: Cli arguments
|
|
|
|
:return: args: Array with all arguments
|
|
|
|
"""
|
|
|
|
arguments = Arguments(args, 'Graph profits')
|
2019-06-22 18:27:29 +00:00
|
|
|
arguments.build_args(optionlist=ARGS_PLOT_PROFIT)
|
2018-03-05 04:21:49 +00:00
|
|
|
|
2019-06-30 07:28:49 +00:00
|
|
|
parsed_args = arguments.parse_args()
|
|
|
|
|
|
|
|
# Load the configuration
|
|
|
|
config = setup_configuration(parsed_args, RunMode.OTHER)
|
|
|
|
return config
|
2018-03-05 04:21:49 +00:00
|
|
|
|
|
|
|
|
2018-03-18 01:46:18 +00:00
|
|
|
def main(sysargv: List[str]) -> None:
|
2018-03-05 04:21:49 +00:00
|
|
|
"""
|
|
|
|
This function will initiate the bot and start the trading loop.
|
|
|
|
:return: None
|
|
|
|
"""
|
|
|
|
logger.info('Starting Plot Dataframe')
|
|
|
|
plot_profit(
|
|
|
|
plot_parse_args(sysargv)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
2018-01-12 09:55:49 +00:00
|
|
|
if __name__ == '__main__':
|
2018-03-05 04:21:49 +00:00
|
|
|
main(sys.argv[1:])
|