freqtrade_origin/freqtrade/data/history/datahandlers/hdf5datahandler.py

175 lines
6.3 KiB
Python
Raw Normal View History

import logging
2022-09-18 14:57:03 +00:00
from typing import Optional
import numpy as np
import pandas as pd
from freqtrade.configuration import TimeRange
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS, DEFAULT_TRADES_COLUMNS
from freqtrade.enums import CandleType, TradingMode
from .idatahandler import IDataHandler
2020-09-28 17:39:41 +00:00
logger = logging.getLogger(__name__)
2020-07-24 17:23:37 +00:00
class HDF5DataHandler(IDataHandler):
_columns = DEFAULT_DATAFRAME_COLUMNS
def ohlcv_store(
2024-05-12 15:41:55 +00:00
self, pair: str, timeframe: str, data: pd.DataFrame, candle_type: CandleType
) -> None:
"""
Store data in hdf5 file.
:param pair: Pair - used to generate filename
2021-06-25 17:13:31 +00:00
:param timeframe: Timeframe - used to generate filename
:param data: Dataframe containing OHLCV data
2021-12-03 11:23:35 +00:00
:param candle_type: Any of the enum CandleType (must match trading mode!)
:return: None
"""
key = self._pair_ohlcv_key(pair, timeframe)
_data = data.copy()
2022-05-16 17:53:01 +00:00
filename = self._pair_data_filename(self._datadir, pair, timeframe, candle_type)
self.create_dir_if_needed(filename)
2020-07-25 15:06:58 +00:00
2021-12-01 19:32:23 +00:00
_data.loc[:, self._columns].to_hdf(
2024-05-12 15:41:55 +00:00
filename,
key=key,
mode="a",
complevel=9,
complib="blosc",
format="table",
data_columns=["date"],
2021-12-01 19:32:23 +00:00
)
2024-05-12 15:41:55 +00:00
def _ohlcv_load(
self, pair: str, timeframe: str, timerange: Optional[TimeRange], candle_type: CandleType
) -> pd.DataFrame:
"""
Internal method used to load data for one pair from disk.
Implements the loading and conversion to a Pandas dataframe.
Timerange trimming and dataframe validation happens outside of this method.
:param pair: Pair to load data
:param timeframe: Timeframe (e.g. "5m")
:param timerange: Limit data to be loaded to this timerange.
Optionally implemented by subclasses to avoid loading
all data where possible.
2021-12-03 11:23:35 +00:00
:param candle_type: Any of the enum CandleType (must match trading mode!)
:return: DataFrame with ohlcv data, or empty DataFrame
"""
key = self._pair_ohlcv_key(pair, timeframe)
2024-05-12 15:41:55 +00:00
filename = self._pair_data_filename(self._datadir, pair, timeframe, candle_type=candle_type)
if not filename.exists():
# Fallback mode for 1M files
filename = self._pair_data_filename(
2024-05-12 15:41:55 +00:00
self._datadir, pair, timeframe, candle_type=candle_type, no_timeframe_modify=True
)
if not filename.exists():
return pd.DataFrame(columns=self._columns)
where = []
if timerange:
2024-05-12 15:41:55 +00:00
if timerange.starttype == "date":
where.append(f"date >= Timestamp({timerange.startts * 1e9})")
2024-05-12 15:41:55 +00:00
if timerange.stoptype == "date":
where.append(f"date <= Timestamp({timerange.stopts * 1e9})")
pairdata = pd.read_hdf(filename, key=key, mode="r", where=where)
if list(pairdata.columns) != self._columns:
raise ValueError("Wrong dataframe format")
2024-05-12 15:41:55 +00:00
pairdata = pairdata.astype(
dtype={
"open": "float",
"high": "float",
"low": "float",
"close": "float",
"volume": "float",
}
)
pairdata = pairdata.reset_index(drop=True)
return pairdata
def ohlcv_append(
2024-05-12 15:41:55 +00:00
self, pair: str, timeframe: str, data: pd.DataFrame, candle_type: CandleType
) -> None:
"""
Append data to existing data structures
:param pair: Pair
:param timeframe: Timeframe this ohlcv data is for
:param data: Data to append.
2021-12-03 11:23:35 +00:00
:param candle_type: Any of the enum CandleType (must match trading mode!)
"""
raise NotImplementedError()
def _trades_store(self, pair: str, data: pd.DataFrame, trading_mode: TradingMode) -> None:
"""
Store trades data (list of Dicts) to file
:param pair: Pair - used for filename
:param data: Dataframe containing trades
column sequence as in DEFAULT_TRADES_COLUMNS
:param trading_mode: Trading mode to use (used to determine the filename)
"""
key = self._pair_trades_key(pair)
2020-07-25 15:06:58 +00:00
2023-08-18 07:31:57 +00:00
data.to_hdf(
2024-05-12 15:41:55 +00:00
self._pair_trades_filename(self._datadir, pair, trading_mode),
key=key,
mode="a",
complevel=9,
complib="blosc",
format="table",
data_columns=["timestamp"],
2021-12-01 19:32:23 +00:00
)
def trades_append(self, pair: str, data: pd.DataFrame):
"""
Append data to existing files
:param pair: Pair - used for filename
:param data: Dataframe containing trades
column sequence as in DEFAULT_TRADES_COLUMNS
"""
raise NotImplementedError()
def _trades_load(
self, pair: str, trading_mode: TradingMode, timerange: Optional[TimeRange] = None
) -> pd.DataFrame:
"""
2020-07-12 18:41:25 +00:00
Load a pair from h5 file.
:param pair: Load trades for this pair
:param trading_mode: Trading mode to use (used to determine the filename)
:param timerange: Timerange to load trades for - currently not implemented
:return: Dataframe containing trades
"""
2020-07-12 18:41:25 +00:00
key = self._pair_trades_key(pair)
filename = self._pair_trades_filename(self._datadir, pair, trading_mode)
2020-07-12 18:41:25 +00:00
if not filename.exists():
return pd.DataFrame(columns=DEFAULT_TRADES_COLUMNS)
2020-07-12 18:41:25 +00:00
where = []
if timerange:
2024-05-12 15:41:55 +00:00
if timerange.starttype == "date":
2020-07-12 18:41:25 +00:00
where.append(f"timestamp >= {timerange.startts * 1e3}")
2024-05-12 15:41:55 +00:00
if timerange.stoptype == "date":
2020-07-12 18:41:25 +00:00
where.append(f"timestamp < {timerange.stopts * 1e3}")
trades: pd.DataFrame = pd.read_hdf(filename, key=key, mode="r", where=where)
2024-05-12 15:41:55 +00:00
trades[["id", "type"]] = trades[["id", "type"]].replace({np.nan: None})
return trades
@classmethod
def _get_file_extension(cls):
return "h5"
@classmethod
2020-07-25 15:19:41 +00:00
def _pair_ohlcv_key(cls, pair: str, timeframe: str) -> str:
# Escape futures pairs to avoid warnings
2024-05-12 15:41:55 +00:00
pair_esc = pair.replace(":", "_")
return f"{pair_esc}/ohlcv/tf_{timeframe}"
@classmethod
2020-07-25 15:19:41 +00:00
def _pair_trades_key(cls, pair: str) -> str:
return f"{pair}/trades"