freqtrade_origin/freqtrade/freqai/base_models/BaseClassifierModel.py

130 lines
4.9 KiB
Python
Raw Normal View History

import logging
2022-09-23 08:18:34 +00:00
from time import time
from typing import Any
import numpy as np
import numpy.typing as npt
import pandas as pd
from pandas import DataFrame
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.freqai_interface import IFreqaiModel
logger = logging.getLogger(__name__)
class BaseClassifierModel(IFreqaiModel):
"""
Base class for regression type models (e.g. Catboost, LightGBM, XGboost etc.).
2023-06-10 11:11:47 +00:00
User *must* inherit from this class and set fit(). See example scripts
such as prediction_models/CatboostClassifier.py for guidance.
"""
2024-05-12 15:12:20 +00:00
def train(self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
for storing, saving, loading, and analyzing the data.
:param unfiltered_df: Full dataframe for the current training period
:param metadata: pair metadata from strategy.
:return:
:model: Trained model which can be used to inference (self.predict)
"""
2022-09-23 08:18:34 +00:00
logger.info(f"-------------------- Starting training {pair} --------------------")
start_time = time()
# filter the features requested by user in the configuration file and elegantly handle NaNs
features_filtered, labels_filtered = dk.filter_features(
unfiltered_df,
dk.training_features_list,
dk.label_list,
training_filter=True,
)
start_date = unfiltered_df["date"].iloc[0].strftime("%Y-%m-%d")
end_date = unfiltered_df["date"].iloc[-1].strftime("%Y-%m-%d")
2024-05-12 15:12:20 +00:00
logger.info(
f"-------------------- Training on data from {start_date} to "
f"{end_date} --------------------"
)
# split data into train/test data.
dd = dk.make_train_test_datasets(features_filtered, labels_filtered)
2022-10-20 15:15:41 +00:00
if not self.freqai_info.get("fit_live_predictions_candles", 0) or not self.live:
dk.fit_labels()
dk.feature_pipeline = self.define_data_pipeline(threads=dk.thread_count)
2024-05-12 15:12:20 +00:00
(dd["train_features"], dd["train_labels"], dd["train_weights"]) = (
dk.feature_pipeline.fit_transform(
dd["train_features"], dd["train_labels"], dd["train_weights"]
)
)
2024-05-12 15:12:20 +00:00
if self.freqai_info.get("data_split_parameters", {}).get("test_size", 0.1) != 0:
(dd["test_features"], dd["test_labels"], dd["test_weights"]) = (
dk.feature_pipeline.transform(
dd["test_features"], dd["test_labels"], dd["test_weights"]
)
)
logger.info(
2022-09-23 08:18:34 +00:00
f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
)
logger.info(f"Training model on {len(dd['train_features'])} data points")
model = self.fit(dd, dk)
2022-09-23 08:18:34 +00:00
end_time = time()
2024-05-12 15:12:20 +00:00
logger.info(
f"-------------------- Done training {pair} "
f"({end_time - start_time:.2f} secs) --------------------"
)
return model
def predict(
self, unfiltered_df: DataFrame, dk: FreqaiDataKitchen, **kwargs
) -> tuple[DataFrame, npt.NDArray[np.int_]]:
"""
Filter the prediction features data and predict with it.
2022-10-10 12:15:30 +00:00
:param unfiltered_df: Full dataframe for the current backtest period.
:return:
:pred_df: dataframe containing the predictions
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
data (NaNs) or felt uncertain about data (PCA and DI index)
"""
dk.find_features(unfiltered_df)
filtered_df, _ = dk.filter_features(
unfiltered_df, dk.training_features_list, training_filter=False
)
dk.data_dictionary["prediction_features"] = filtered_df
dk.data_dictionary["prediction_features"], outliers, _ = dk.feature_pipeline.transform(
2024-05-12 15:12:20 +00:00
dk.data_dictionary["prediction_features"], outlier_check=True
)
predictions = self.model.predict(dk.data_dictionary["prediction_features"])
if self.CONV_WIDTH == 1:
predictions = np.reshape(predictions, (-1, len(dk.label_list)))
pred_df = DataFrame(predictions, columns=dk.label_list)
predictions_prob = self.model.predict_proba(dk.data_dictionary["prediction_features"])
if self.CONV_WIDTH == 1:
predictions_prob = np.reshape(predictions_prob, (-1, len(self.model.classes_)))
pred_df_prob = DataFrame(predictions_prob, columns=self.model.classes_)
pred_df = pd.concat([pred_df, pred_df_prob], axis=1)
2023-06-18 09:31:03 +00:00
if dk.feature_pipeline["di"]:
dk.DI_values = dk.feature_pipeline["di"].di_values
else:
dk.DI_values = np.zeros(outliers.shape[0])
dk.do_predict = outliers
return (pred_df, dk.do_predict)