freqtrade_origin/tests/optimize/test_backtesting.py

2313 lines
84 KiB
Python
Raw Normal View History

# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, unused-argument
2018-03-17 21:44:47 +00:00
import random
from copy import deepcopy
from datetime import datetime, timedelta, timezone
from pathlib import Path
from unittest.mock import MagicMock, PropertyMock
2018-03-17 21:44:47 +00:00
import numpy as np
2018-03-17 21:44:47 +00:00
import pandas as pd
2018-07-04 07:31:35 +00:00
import pytest
2018-03-17 21:44:47 +00:00
from freqtrade import constants
2020-09-28 17:43:15 +00:00
from freqtrade.commands.optimize_commands import setup_optimize_configuration, start_backtesting
from freqtrade.configuration import TimeRange
2018-12-13 05:35:28 +00:00
from freqtrade.data import history
2020-09-25 19:00:58 +00:00
from freqtrade.data.btanalysis import BT_DATA_COLUMNS, evaluate_result_multi
from freqtrade.data.converter import clean_ohlcv_dataframe
from freqtrade.data.dataprovider import DataProvider
2019-12-17 22:06:03 +00:00
from freqtrade.data.history import get_timerange
2023-01-20 08:37:28 +00:00
from freqtrade.enums import CandleType, ExitType, RunMode
2021-02-22 05:54:33 +00:00
from freqtrade.exceptions import DependencyException, OperationalException
from freqtrade.exchange import timeframe_to_next_date, timeframe_to_prev_date
from freqtrade.optimize.backtest_caching import get_backtest_metadata_filename, get_strategy_run_id
from freqtrade.optimize.backtesting import Backtesting
2023-01-20 08:37:28 +00:00
from freqtrade.persistence import LocalTrade, Trade
from freqtrade.resolvers import StrategyResolver
2023-05-14 15:46:56 +00:00
from freqtrade.util.datetime_helpers import dt_utc
2024-05-12 13:08:40 +00:00
from tests.conftest import (
CURRENT_TEST_STRATEGY,
EXMS,
get_args,
log_has,
log_has_re,
patch_exchange,
patched_configuration_load_config_file,
)
2020-09-28 17:43:15 +00:00
2019-10-05 13:34:31 +00:00
ORDER_TYPES = [
2024-05-12 14:15:27 +00:00
{"entry": "limit", "exit": "limit", "stoploss": "limit", "stoploss_on_exchange": False},
{"entry": "limit", "exit": "limit", "stoploss": "limit", "stoploss_on_exchange": True},
]
2019-10-05 13:34:31 +00:00
2018-01-28 07:38:41 +00:00
def trim_dictlist(dict_list, num):
2018-01-17 17:19:39 +00:00
new = {}
2018-01-28 07:38:41 +00:00
for pair, pair_data in dict_list.items():
2019-05-08 18:33:22 +00:00
new[pair] = pair_data[num:].reset_index()
2018-01-17 17:19:39 +00:00
return new
2019-09-07 18:56:03 +00:00
def load_data_test(what, testdatadir):
2024-05-12 14:15:27 +00:00
timerange = TimeRange.parse_timerange("1510694220-1510700340")
data = history.load_pair_history(
pair="UNITTEST/BTC",
datadir=testdatadir,
timeframe="1m",
timerange=timerange,
drop_incomplete=False,
fill_up_missing=False,
)
base = 0.001
2024-05-12 14:15:27 +00:00
if what == "raise":
data.loc[:, "open"] = data.index * base
data.loc[:, "high"] = data.index * base + 0.0001
data.loc[:, "low"] = data.index * base - 0.0001
data.loc[:, "close"] = data.index * base
if what == "lower":
data.loc[:, "open"] = 1 - data.index * base
data.loc[:, "high"] = 1 - data.index * base + 0.0001
data.loc[:, "low"] = 1 - data.index * base - 0.0001
data.loc[:, "close"] = 1 - data.index * base
if what == "sine":
hz = 0.1 # frequency
2024-05-12 14:15:27 +00:00
data.loc[:, "open"] = np.sin(data.index * hz) / 1000 + base
data.loc[:, "high"] = np.sin(data.index * hz) / 1000 + base + 0.0001
data.loc[:, "low"] = np.sin(data.index * hz) / 1000 + base - 0.0001
data.loc[:, "close"] = np.sin(data.index * hz) / 1000 + base
2024-05-12 14:15:27 +00:00
return {
"UNITTEST/BTC": clean_ohlcv_dataframe(
data, timeframe="1m", pair="UNITTEST/BTC", fill_missing=True, drop_incomplete=True
)
}
# FIX: fixturize this?
2024-05-12 14:15:27 +00:00
def _make_backtest_conf(mocker, datadir, conf=None, pair="UNITTEST/BTC"):
data = history.load_data(datadir=datadir, timeframe="1m", pairs=[pair])
data = trim_dictlist(data, -201)
2018-06-17 20:32:56 +00:00
patch_exchange(mocker)
2018-04-21 22:19:11 +00:00
backtesting = Backtesting(conf)
backtesting._set_strategy(backtesting.strategylist[0])
processed = backtesting.strategy.advise_all_indicators(data)
2019-12-17 22:06:03 +00:00
min_date, max_date = get_timerange(processed)
return {
2024-05-12 14:15:27 +00:00
"processed": processed,
"start_date": min_date,
"end_date": max_date,
}
def _trend(signals, buy_value, sell_value):
2024-05-12 14:15:27 +00:00
n = len(signals["low"])
buy = np.zeros(n)
sell = np.zeros(n)
2024-05-12 14:15:27 +00:00
for i in range(0, len(signals["date"])):
if random.random() > 0.5: # Both buy and sell signals at same timeframe
buy[i] = buy_value
sell[i] = sell_value
2024-05-12 14:15:27 +00:00
signals["enter_long"] = buy
signals["exit_long"] = sell
signals["enter_short"] = 0
signals["exit_short"] = 0
return signals
def _trend_alternate(dataframe=None, metadata=None):
signals = dataframe
2024-05-12 14:15:27 +00:00
low = signals["low"]
n = len(low)
buy = np.zeros(n)
sell = np.zeros(n)
for i in range(0, len(buy)):
if i % 2 == 0:
buy[i] = 1
else:
sell[i] = 1
2024-05-12 14:15:27 +00:00
signals["enter_long"] = buy
signals["exit_long"] = sell
signals["enter_short"] = 0
signals["exit_short"] = 0
return dataframe
# Unit tests
2020-01-26 12:33:13 +00:00
def test_setup_optimize_configuration_without_arguments(mocker, default_conf, caplog) -> None:
patched_configuration_load_config_file(mocker, default_conf)
args = [
2024-05-12 14:15:27 +00:00
"backtesting",
"--config",
"config.json",
"--strategy",
CURRENT_TEST_STRATEGY,
"--export",
"none",
]
2020-01-26 12:33:13 +00:00
config = setup_optimize_configuration(get_args(args), RunMode.BACKTEST)
2024-05-12 14:15:27 +00:00
assert "max_open_trades" in config
assert "stake_currency" in config
assert "stake_amount" in config
assert "exchange" in config
assert "pair_whitelist" in config["exchange"]
assert "datadir" in config
assert log_has("Using data directory: {} ...".format(config["datadir"]), caplog)
assert "timeframe" in config
assert not log_has_re("Parameter -i/--ticker-interval detected .*", caplog)
assert "position_stacking" not in config
assert not log_has("Parameter --enable-position-stacking detected ...", caplog)
assert "timerange" not in config
assert "export" in config
assert config["export"] == "none"
assert "runmode" in config
assert config["runmode"] == RunMode.BACKTEST
2019-01-01 13:07:40 +00:00
def test_setup_bt_configuration_with_arguments(mocker, default_conf, caplog) -> None:
patched_configuration_load_config_file(mocker, default_conf)
2024-05-12 14:15:27 +00:00
mocker.patch("freqtrade.configuration.configuration.create_datadir", lambda c, x: x)
args = [
2024-05-12 14:15:27 +00:00
"backtesting",
"--config",
"config.json",
"--strategy",
CURRENT_TEST_STRATEGY,
"--datadir",
"/foo/bar",
"--timeframe",
"1m",
"--enable-position-stacking",
"--disable-max-market-positions",
"--timerange",
":100",
"--export-filename",
"foo_bar.json",
"--fee",
"0",
]
2020-01-26 12:33:13 +00:00
config = setup_optimize_configuration(get_args(args), RunMode.BACKTEST)
2024-05-12 14:15:27 +00:00
assert "max_open_trades" in config
assert "stake_currency" in config
assert "stake_amount" in config
assert "exchange" in config
assert "pair_whitelist" in config["exchange"]
assert "datadir" in config
assert config["runmode"] == RunMode.BACKTEST
2018-12-25 13:35:48 +00:00
2024-05-12 14:15:27 +00:00
assert log_has("Using data directory: {} ...".format(config["datadir"]), caplog)
assert "timeframe" in config
assert log_has("Parameter -i/--timeframe detected ... Using timeframe: 1m ...", caplog)
2024-05-12 14:15:27 +00:00
assert "position_stacking" in config
assert log_has("Parameter --enable-position-stacking detected ...", caplog)
2018-07-17 19:05:03 +00:00
2024-05-12 14:15:27 +00:00
assert "use_max_market_positions" in config
assert log_has("Parameter --disable-max-market-positions detected ...", caplog)
assert log_has("max_open_trades set to unlimited ...", caplog)
2024-05-12 14:15:27 +00:00
assert "timerange" in config
assert log_has("Parameter --timerange detected: {} ...".format(config["timerange"]), caplog)
2024-05-12 14:15:27 +00:00
assert "export" in config
assert "exportfilename" in config
assert isinstance(config["exportfilename"], Path)
assert log_has("Storing backtest results to {} ...".format(config["exportfilename"]), caplog)
2024-05-12 14:15:27 +00:00
assert "fee" in config
assert log_has("Parameter --fee detected, setting fee to: {} ...".format(config["fee"]), caplog)
2019-10-05 13:34:31 +00:00
2021-02-26 18:48:06 +00:00
def test_setup_optimize_configuration_stake_amount(mocker, default_conf, caplog) -> None:
patched_configuration_load_config_file(mocker, default_conf)
2018-06-03 22:48:26 +00:00
args = [
2024-05-12 14:15:27 +00:00
"backtesting",
"--config",
"config.json",
"--strategy",
CURRENT_TEST_STRATEGY,
"--stake-amount",
"1",
"--starting-balance",
"2",
2018-06-03 22:48:26 +00:00
]
conf = setup_optimize_configuration(get_args(args), RunMode.BACKTEST)
assert isinstance(conf, dict)
2018-06-03 22:48:26 +00:00
2021-02-26 18:48:06 +00:00
args = [
2024-05-12 14:15:27 +00:00
"backtesting",
"--config",
"config.json",
"--strategy",
CURRENT_TEST_STRATEGY,
"--stake-amount",
"1",
"--starting-balance",
"0.5",
2021-02-26 18:48:06 +00:00
]
with pytest.raises(OperationalException, match=r"Starting balance .* smaller .*"):
setup_optimize_configuration(get_args(args), RunMode.BACKTEST)
2018-06-03 22:48:26 +00:00
2018-04-21 22:19:11 +00:00
def test_start(mocker, fee, default_conf, caplog) -> None:
start_mock = MagicMock()
2024-05-12 14:15:27 +00:00
mocker.patch(f"{EXMS}.get_fee", fee)
2018-06-17 20:32:56 +00:00
patch_exchange(mocker)
2024-05-12 14:15:27 +00:00
mocker.patch("freqtrade.optimize.backtesting.Backtesting.start", start_mock)
patched_configuration_load_config_file(mocker, default_conf)
2019-07-11 21:39:42 +00:00
args = [
2024-05-12 14:15:27 +00:00
"backtesting",
"--config",
"config.json",
"--strategy",
CURRENT_TEST_STRATEGY,
]
2020-02-10 09:35:48 +00:00
pargs = get_args(args)
start_backtesting(pargs)
2024-05-12 14:15:27 +00:00
assert log_has("Starting freqtrade in Backtesting mode", caplog)
assert start_mock.call_count == 1
@pytest.mark.parametrize("order_types", ORDER_TYPES)
def test_backtesting_init(mocker, default_conf, order_types) -> None:
"""
Check that stoploss_on_exchange is set to False while backtesting
since backtesting assumes a perfect stoploss anyway.
"""
default_conf["order_types"] = order_types
2018-06-17 20:32:56 +00:00
patch_exchange(mocker)
2024-05-12 14:15:27 +00:00
get_fee = mocker.patch(f"{EXMS}.get_fee", MagicMock(return_value=0.5))
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
assert backtesting.config == default_conf
2024-05-12 14:15:27 +00:00
assert backtesting.timeframe == "5m"
assert callable(backtesting.strategy.advise_all_indicators)
2021-09-22 18:42:31 +00:00
assert callable(backtesting.strategy.advise_entry)
assert callable(backtesting.strategy.advise_exit)
assert isinstance(backtesting.strategy.dp, DataProvider)
get_fee.assert_called()
2018-06-23 04:58:25 +00:00
assert backtesting.fee == 0.5
assert not backtesting.strategy.order_types["stoploss_on_exchange"]
2022-04-25 23:46:40 +00:00
assert backtesting.strategy.bot_started is True
def test_backtesting_init_no_timeframe(mocker, default_conf, caplog) -> None:
patch_exchange(mocker)
2024-05-12 14:15:27 +00:00
del default_conf["timeframe"]
default_conf["strategy_list"] = [CURRENT_TEST_STRATEGY, "HyperoptableStrategy"]
2024-05-12 14:15:27 +00:00
mocker.patch(f"{EXMS}.get_fee", MagicMock(return_value=0.5))
with pytest.raises(
OperationalException, match=r"Timeframe needs to be set in either configuration"
):
Backtesting(default_conf)
def test_data_with_fee(default_conf, mocker) -> None:
2019-10-05 13:34:31 +00:00
patch_exchange(mocker)
2024-05-12 14:15:27 +00:00
default_conf["fee"] = 0.01234
2019-10-05 13:34:31 +00:00
2024-05-12 14:15:27 +00:00
fee_mock = mocker.patch(f"{EXMS}.get_fee", MagicMock(return_value=0.5))
2019-10-05 13:34:31 +00:00
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
2024-04-27 17:52:48 +00:00
assert backtesting.fee == 0.01234
2019-10-05 13:34:31 +00:00
assert fee_mock.call_count == 0
2024-05-12 14:15:27 +00:00
default_conf["fee"] = 0.0
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
assert backtesting.fee == 0.0
assert fee_mock.call_count == 0
2019-10-05 13:34:31 +00:00
def test_data_to_dataframe_bt(default_conf, mocker, testdatadir) -> None:
2018-06-17 20:32:56 +00:00
patch_exchange(mocker)
2024-05-12 14:15:27 +00:00
timerange = TimeRange.parse_timerange("1510694220-1510700340")
data = history.load_data(
testdatadir, "1m", ["UNITTEST/BTC"], timerange=timerange, fill_up_missing=True
)
2018-04-21 22:19:11 +00:00
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
processed = backtesting.strategy.advise_all_indicators(data)
2024-05-12 14:15:27 +00:00
assert len(processed["UNITTEST/BTC"]) == 103
# Load strategy to compare the result between Backtesting function and strategy are the same
strategy = StrategyResolver.load_strategy(default_conf)
processed2 = strategy.advise_all_indicators(data)
2024-05-12 14:15:27 +00:00
assert processed["UNITTEST/BTC"].equals(processed2["UNITTEST/BTC"])
def test_backtest_abort(default_conf, mocker, testdatadir) -> None:
patch_exchange(mocker)
backtesting = Backtesting(default_conf)
backtesting.check_abort()
backtesting.abort = True
with pytest.raises(DependencyException, match="Stop requested"):
backtesting.check_abort()
# abort flag resets
assert backtesting.abort is False
assert backtesting.progress.progress == 0
2023-03-26 09:30:44 +00:00
def test_backtesting_start(default_conf, mocker, caplog) -> None:
2019-12-17 22:06:03 +00:00
def get_timerange(input1):
2023-05-14 16:31:09 +00:00
return dt_utc(2017, 11, 14, 21, 17), dt_utc(2017, 11, 14, 22, 59)
2024-05-12 14:15:27 +00:00
mocker.patch("freqtrade.data.history.get_timerange", get_timerange)
2018-06-17 20:32:56 +00:00
patch_exchange(mocker)
2024-05-12 14:15:27 +00:00
mocker.patch("freqtrade.optimize.backtesting.Backtesting.backtest")
mocker.patch("freqtrade.optimize.backtesting.generate_backtest_stats")
mocker.patch("freqtrade.optimize.backtesting.show_backtest_results")
sbs = mocker.patch("freqtrade.optimize.backtesting.store_backtest_stats")
sbc = mocker.patch("freqtrade.optimize.backtesting.store_backtest_analysis_results")
mocker.patch(
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist",
PropertyMock(return_value=["UNITTEST/BTC"]),
)
default_conf["timeframe"] = "1m"
default_conf["export"] = "signals"
default_conf["exportfilename"] = "export.txt"
default_conf["timerange"] = "-1510694220"
default_conf["runmode"] = RunMode.BACKTEST
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
backtesting.strategy.bot_loop_start = MagicMock()
2023-03-26 09:30:44 +00:00
backtesting.strategy.bot_start = MagicMock()
backtesting.start()
# check the logs, that will contain the backtest result
2024-05-12 15:51:21 +00:00
exists = ["Backtesting with data from 2017-11-14 21:17:00 up to 2017-11-14 22:59:00 (0 days)."]
for line in exists:
assert log_has(line, caplog)
assert backtesting.strategy.dp._pairlists is not None
2023-03-26 09:30:44 +00:00
assert backtesting.strategy.bot_start.call_count == 1
assert backtesting.strategy.bot_loop_start.call_count == 0
2021-02-09 19:03:03 +00:00
assert sbs.call_count == 1
assert sbc.call_count == 1
def test_backtesting_start_no_data(default_conf, mocker, caplog, testdatadir) -> None:
2019-12-17 22:06:03 +00:00
def get_timerange(input1):
2023-05-14 16:31:09 +00:00
return dt_utc(2017, 11, 14, 21, 17), dt_utc(2017, 11, 14, 22, 59)
2024-05-12 14:15:27 +00:00
mocker.patch(
"freqtrade.data.history.history_utils.load_pair_history",
MagicMock(return_value=pd.DataFrame()),
)
mocker.patch("freqtrade.data.history.get_timerange", get_timerange)
2018-06-17 20:32:56 +00:00
patch_exchange(mocker)
2024-05-12 14:15:27 +00:00
mocker.patch("freqtrade.optimize.backtesting.Backtesting.backtest")
mocker.patch(
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist",
PropertyMock(return_value=["UNITTEST/BTC"]),
)
2024-05-12 14:15:27 +00:00
default_conf["timeframe"] = "1m"
default_conf["export"] = "none"
default_conf["timerange"] = "20180101-20180102"
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
2024-05-12 14:15:27 +00:00
with pytest.raises(OperationalException, match="No data found. Terminating."):
2019-10-23 18:27:51 +00:00
backtesting.start()
def test_backtesting_no_pair_left(default_conf, mocker, caplog, testdatadir) -> None:
2024-05-12 14:15:27 +00:00
mocker.patch(f"{EXMS}.exchange_has", MagicMock(return_value=True))
mocker.patch(
"freqtrade.data.history.history_utils.load_pair_history",
MagicMock(return_value=pd.DataFrame()),
)
mocker.patch("freqtrade.data.history.get_timerange", get_timerange)
patch_exchange(mocker)
2024-05-12 14:15:27 +00:00
mocker.patch("freqtrade.optimize.backtesting.Backtesting.backtest")
mocker.patch(
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist", PropertyMock(return_value=[])
)
2024-05-12 14:15:27 +00:00
default_conf["timeframe"] = "1m"
default_conf["export"] = "none"
default_conf["timerange"] = "20180101-20180102"
2024-05-12 14:15:27 +00:00
with pytest.raises(OperationalException, match="No pair in whitelist."):
Backtesting(default_conf)
2024-05-12 14:15:27 +00:00
default_conf["pairlists"] = [{"method": "VolumePairList", "number_assets": 5}]
with pytest.raises(
OperationalException,
match=r"VolumePairList not allowed for backtesting\..*StaticPairList.*",
):
Backtesting(default_conf)
2024-05-12 14:15:27 +00:00
default_conf.update(
{
"pairlists": [{"method": "StaticPairList"}],
"timeframe_detail": "1d",
}
)
2021-08-14 14:56:49 +00:00
2024-05-12 14:15:27 +00:00
with pytest.raises(
OperationalException, match="Detail timeframe must be smaller than strategy timeframe."
):
2021-08-14 14:56:49 +00:00
Backtesting(default_conf)
2020-06-07 14:02:08 +00:00
def test_backtesting_pairlist_list(default_conf, mocker, caplog, testdatadir, tickers) -> None:
2024-05-12 14:15:27 +00:00
mocker.patch(f"{EXMS}.exchange_has", MagicMock(return_value=True))
mocker.patch(f"{EXMS}.get_tickers", tickers)
mocker.patch(f"{EXMS}.price_to_precision", lambda s, x, y: y)
mocker.patch("freqtrade.data.history.get_timerange", get_timerange)
2020-06-07 14:02:08 +00:00
patch_exchange(mocker)
2024-05-12 14:15:27 +00:00
mocker.patch("freqtrade.optimize.backtesting.Backtesting.backtest")
mocker.patch(
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist",
PropertyMock(return_value=["XRP/BTC"]),
)
mocker.patch("freqtrade.plugins.pairlistmanager.PairListManager.refresh_pairlist")
2020-06-07 14:02:08 +00:00
2024-05-12 14:15:27 +00:00
default_conf["ticker_interval"] = "1m"
default_conf["export"] = "none"
2020-06-07 14:02:08 +00:00
# Use stoploss from strategy
2024-05-12 14:15:27 +00:00
del default_conf["stoploss"]
default_conf["timerange"] = "20180101-20180102"
default_conf["pairlists"] = [{"method": "VolumePairList", "number_assets": 5}]
with pytest.raises(
OperationalException,
match=r"VolumePairList not allowed for backtesting\..*StaticPairList.*",
):
2020-06-07 14:02:08 +00:00
Backtesting(default_conf)
2024-05-12 14:15:27 +00:00
default_conf["pairlists"] = [{"method": "StaticPairList"}, {"method": "PerformanceFilter"}]
with pytest.raises(
OperationalException, match="PerformanceFilter not allowed for backtesting."
):
Backtesting(default_conf)
2024-05-12 14:15:27 +00:00
default_conf["pairlists"] = [
{"method": "StaticPairList"},
{"method": "PrecisionFilter"},
]
2020-06-07 14:02:08 +00:00
Backtesting(default_conf)
# Multiple strategies
2024-05-12 14:15:27 +00:00
default_conf["strategy_list"] = [CURRENT_TEST_STRATEGY, "StrategyTestV2"]
with pytest.raises(
OperationalException,
match="PrecisionFilter not allowed for backtesting multiple strategies.",
):
Backtesting(default_conf)
2020-06-07 14:02:08 +00:00
def test_backtest__enter_trade(default_conf, fee, mocker) -> None:
2024-05-12 14:15:27 +00:00
default_conf["use_exit_signal"] = False
mocker.patch(f"{EXMS}.get_fee", fee)
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
2021-02-22 05:54:33 +00:00
patch_exchange(mocker)
2024-05-12 14:15:27 +00:00
default_conf["stake_amount"] = "unlimited"
default_conf["max_open_trades"] = 2
2021-02-22 05:54:33 +00:00
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
2024-05-12 14:15:27 +00:00
pair = "UNITTEST/BTC"
2021-02-22 05:54:33 +00:00
row = [
pd.Timestamp(year=2020, month=1, day=1, hour=5, minute=0),
1, # Buy
2021-02-22 05:54:33 +00:00
0.001, # Open
0.0011, # Close
0, # Sell
0.00099, # Low
0.0012, # High
2024-05-12 14:15:27 +00:00
"", # Buy Signal Name
2021-02-22 05:54:33 +00:00
]
2024-05-12 14:15:27 +00:00
trade = backtesting._enter_trade(pair, row=row, direction="long")
2021-02-22 05:54:33 +00:00
assert isinstance(trade, LocalTrade)
assert trade.stake_amount == 495
2021-04-21 18:17:30 +00:00
# Fake 2 trades, so there's not enough amount for the next trade left.
LocalTrade.trades_open.append(trade)
backtesting.wallets.update()
2024-05-12 14:15:27 +00:00
trade = backtesting._enter_trade(pair, row=row, direction="long")
2021-02-22 05:54:33 +00:00
assert trade is None
2021-04-21 18:17:30 +00:00
LocalTrade.trades_open.pop()
2024-05-12 14:15:27 +00:00
trade = backtesting._enter_trade(pair, row=row, direction="long")
2021-04-21 18:17:30 +00:00
assert trade is not None
LocalTrade.trades_open.pop()
2021-02-22 05:54:33 +00:00
2021-07-11 12:10:41 +00:00
backtesting.strategy.custom_stake_amount = lambda **kwargs: 123.5
backtesting.wallets.update()
2024-05-12 14:15:27 +00:00
trade = backtesting._enter_trade(pair, row=row, direction="long")
LocalTrade.trades_open.pop()
2021-07-11 12:10:41 +00:00
assert trade
assert trade.stake_amount == 123.5
# In case of error - use proposed stake
backtesting.strategy.custom_stake_amount = lambda **kwargs: 20 / 0
2024-05-12 14:15:27 +00:00
trade = backtesting._enter_trade(pair, row=row, direction="long")
LocalTrade.trades_open.pop()
2021-07-11 12:10:41 +00:00
assert trade
assert trade.stake_amount == 495
2021-08-24 04:45:09 +00:00
assert trade.is_short is False
2024-05-12 14:15:27 +00:00
trade = backtesting._enter_trade(pair, row=row, direction="short")
LocalTrade.trades_open.pop()
2021-08-24 04:45:09 +00:00
assert trade
assert trade.stake_amount == 495
assert trade.is_short is True
2021-07-11 12:10:41 +00:00
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=300.0)
2024-05-12 14:15:27 +00:00
trade = backtesting._enter_trade(pair, row=row, direction="long")
LocalTrade.trades_open.pop()
assert trade
assert trade.stake_amount == 300.0
def test_backtest__enter_trade_futures(default_conf_usdt, fee, mocker) -> None:
2024-05-12 14:15:27 +00:00
default_conf_usdt["use_exit_signal"] = False
mocker.patch(f"{EXMS}.get_fee", fee)
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
2024-05-12 14:15:27 +00:00
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
mocker.patch(f"{EXMS}.get_max_leverage", return_value=100)
2022-08-24 18:44:48 +00:00
mocker.patch("freqtrade.optimize.backtesting.price_to_precision", lambda p, *args: p)
patch_exchange(mocker)
2024-05-12 14:15:27 +00:00
default_conf_usdt["stake_amount"] = 300
default_conf_usdt["max_open_trades"] = 2
default_conf_usdt["trading_mode"] = "futures"
default_conf_usdt["margin_mode"] = "isolated"
default_conf_usdt["stake_currency"] = "USDT"
default_conf_usdt["exchange"]["pair_whitelist"] = [".*"]
backtesting = Backtesting(default_conf_usdt)
backtesting._set_strategy(backtesting.strategylist[0])
2024-05-12 14:15:27 +00:00
mocker.patch("freqtrade.optimize.backtesting.Backtesting._run_funding_fees")
pair = "ETH/USDT:USDT"
row = [
2022-03-14 10:39:11 +00:00
pd.Timestamp(year=2020, month=1, day=1, hour=5, minute=0),
2022-08-24 18:44:48 +00:00
0.1, # Open
0.12, # High
0.099, # Low
0.11, # Close
2022-03-14 10:39:11 +00:00
1, # enter_long
0, # exit_long
1, # enter_short
0, # exit_hsort
2024-05-12 14:15:27 +00:00
"", # Long Signal Name
"", # Short Signal Name
"", # Exit Signal Name
]
2022-02-27 20:28:28 +00:00
backtesting.strategy.leverage = MagicMock(return_value=5.0)
2024-05-12 14:15:27 +00:00
mocker.patch(f"{EXMS}.get_maintenance_ratio_and_amt", return_value=(0.01, 0.01))
2022-02-27 20:28:28 +00:00
# leverage = 5
2022-08-24 18:44:48 +00:00
# ep1(trade.open_rate) = 0.1
# position(trade.amount) = 15000
2022-02-27 20:28:28 +00:00
# stake_amount = 300 -> wb = 300 / 5 = 60
# mmr = 0.01
# cum_b = 0.01
# side_1: -1 if is_short else 1
# liq_buffer = 0.05
2022-02-27 20:28:28 +00:00
#
2022-03-02 06:14:36 +00:00
# Binance, Long
# liquidation_price
# = ((wb + cum_b) - (side_1 * position * ep1)) / ((position * mmr_b) - (side_1 * position))
2022-08-24 18:44:48 +00:00
# = ((300 + 0.01) - (1 * 15000 * 0.1)) / ((15000 * 0.01) - (1 * 15000))
# = 0.0008080740740740741
# freqtrade_liquidation_price = liq + (abs(open_rate - liq) * liq_buffer * side_1)
2022-08-24 18:44:48 +00:00
# = 0.08080740740740741 + ((0.1 - 0.08080740740740741) * 0.05 * 1)
# = 0.08176703703703704
2024-05-12 14:15:27 +00:00
trade = backtesting._enter_trade(pair, row=row, direction="long")
2022-08-24 18:44:48 +00:00
assert pytest.approx(trade.liquidation_price) == 0.081767037
2022-02-27 20:28:28 +00:00
2022-03-02 06:14:36 +00:00
# Binance, Short
# liquidation_price
# = ((wb + cum_b) - (side_1 * position * ep1)) / ((position * mmr_b) - (side_1 * position))
2022-08-24 18:44:48 +00:00
# = ((300 + 0.01) - ((-1) * 15000 * 0.1)) / ((15000 * 0.01) - ((-1) * 15000))
# = 0.0011881254125412541
# freqtrade_liquidation_price = liq + (abs(open_rate - liq) * liq_buffer * side_1)
2022-08-24 18:44:48 +00:00
# = 0.11881254125412541 + (abs(0.1 - 0.11881254125412541) * 0.05 * -1)
# = 0.11787191419141915
2022-03-02 06:14:36 +00:00
2024-05-12 14:15:27 +00:00
trade = backtesting._enter_trade(pair, row=row, direction="short")
2022-08-24 18:44:48 +00:00
assert pytest.approx(trade.liquidation_price) == 0.11787191
2023-07-15 06:53:03 +00:00
assert pytest.approx(trade.orders[0].cost) == (
2024-05-12 14:15:27 +00:00
trade.stake_amount * trade.leverage + trade.fee_open
)
assert pytest.approx(trade.orders[-1].stake_amount) == trade.stake_amount
2022-02-27 20:28:28 +00:00
2021-02-22 05:54:33 +00:00
# Stake-amount too high!
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=600.0)
2021-02-22 05:54:33 +00:00
2024-05-12 14:15:27 +00:00
trade = backtesting._enter_trade(pair, row=row, direction="long")
2021-02-22 05:54:33 +00:00
assert trade is None
2021-04-21 18:17:30 +00:00
# Stake-amount throwing error
2024-05-12 14:15:27 +00:00
mocker.patch(
"freqtrade.wallets.Wallets.get_trade_stake_amount", side_effect=DependencyException
)
2021-02-22 05:54:33 +00:00
2024-05-12 14:15:27 +00:00
trade = backtesting._enter_trade(pair, row=row, direction="long")
2021-02-22 05:54:33 +00:00
assert trade is None
2024-04-27 17:52:48 +00:00
def test_backtest__check_trade_exit(default_conf, mocker) -> None:
2024-05-12 14:15:27 +00:00
default_conf["use_exit_signal"] = False
2024-04-27 17:52:48 +00:00
patch_exchange(mocker)
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
2024-05-12 14:15:27 +00:00
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
default_conf["timeframe_detail"] = "1m"
default_conf["max_open_trades"] = 2
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
2024-05-12 14:15:27 +00:00
pair = "UNITTEST/BTC"
row = [
pd.Timestamp(year=2020, month=1, day=1, hour=4, minute=55, tzinfo=timezone.utc),
200, # Open
201.5, # High
2021-09-04 18:23:51 +00:00
195, # Low
201, # Close
1, # enter_long
0, # exit_long
0, # enter_short
0, # exit_hsort
2024-05-12 14:15:27 +00:00
"", # Long Signal Name
"", # Short Signal Name
"", # Exit Signal Name
]
2024-05-12 14:15:27 +00:00
trade = backtesting._enter_trade(pair, row=row, direction="long")
assert isinstance(trade, LocalTrade)
row_sell = [
pd.Timestamp(year=2020, month=1, day=1, hour=5, minute=0, tzinfo=timezone.utc),
200, # Open
210.5, # High
2021-09-04 18:23:51 +00:00
195, # Low
201, # Close
0, # enter_long
0, # exit_long
0, # enter_short
0, # exit_short
2024-05-12 14:15:27 +00:00
"", # long Signal Name
"", # Short Signal Name
"", # Exit Signal Name
]
# No data available.
res = backtesting._check_trade_exit(trade, row_sell, row_sell[0].to_pydatetime())
assert res is not None
2022-03-24 19:33:47 +00:00
assert res.exit_reason == ExitType.ROI.value
assert res.close_date_utc == datetime(2020, 1, 1, 5, 0, tzinfo=timezone.utc)
# Enter new trade
2024-05-12 14:15:27 +00:00
trade = backtesting._enter_trade(pair, row=row, direction="long")
assert isinstance(trade, LocalTrade)
# Assign empty ... no result.
backtesting.detail_data[pair] = pd.DataFrame(
2024-05-12 14:15:27 +00:00
[],
columns=[
"date",
"open",
"high",
"low",
"close",
"enter_long",
"exit_long",
"enter_short",
"exit_short",
"long_tag",
"short_tag",
"exit_tag",
],
)
res = backtesting._check_trade_exit(trade, row, row[0].to_pydatetime())
assert res is None
2024-04-27 17:52:48 +00:00
def test_backtest_one(default_conf, mocker, testdatadir) -> None:
2024-05-12 14:15:27 +00:00
default_conf["use_exit_signal"] = False
default_conf["max_open_trades"] = 10
2024-04-27 17:52:48 +00:00
patch_exchange(mocker)
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
2024-05-12 14:15:27 +00:00
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
2018-04-21 22:19:11 +00:00
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
2024-05-12 14:15:27 +00:00
pair = "UNITTEST/BTC"
timerange = TimeRange("date", None, 1517227800, 0)
data = history.load_data(
datadir=testdatadir, timeframe="5m", pairs=["UNITTEST/BTC"], timerange=timerange
)
processed = backtesting.strategy.advise_all_indicators(data)
2024-03-24 10:54:25 +00:00
backtesting.strategy.order_filled = MagicMock()
min_date, max_date = get_timerange(processed)
result = backtesting.backtest(
processed=deepcopy(processed),
2019-12-13 23:12:44 +00:00
start_date=min_date,
end_date=max_date,
)
2024-05-12 14:15:27 +00:00
results = result["results"]
assert not results.empty
assert len(results) == 2
expected = pd.DataFrame(
2024-05-12 14:15:27 +00:00
{
"pair": [pair, pair],
"stake_amount": [0.001, 0.001],
"max_stake_amount": [0.001, 0.001],
"amount": [0.00957442, 0.0097064],
"open_date": pd.to_datetime(
[dt_utc(2018, 1, 29, 18, 40, 0), dt_utc(2018, 1, 30, 3, 30, 0)], utc=True
),
"close_date": pd.to_datetime(
[dt_utc(2018, 1, 29, 22, 35, 0), dt_utc(2018, 1, 30, 4, 10, 0)], utc=True
),
"open_rate": [0.104445, 0.10302485],
"close_rate": [0.104969, 0.103541],
"fee_open": [0.0025, 0.0025],
"fee_close": [0.0025, 0.0025],
"trade_duration": [235, 40],
"profit_ratio": [0.0, 0.0],
"profit_abs": [0.0, 0.0],
"exit_reason": [ExitType.ROI.value, ExitType.ROI.value],
"initial_stop_loss_abs": [0.0940005, 0.09272236],
"initial_stop_loss_ratio": [-0.1, -0.1],
"stop_loss_abs": [0.0940005, 0.09272236],
"stop_loss_ratio": [-0.1, -0.1],
"min_rate": [0.10370188, 0.10300000000000001],
"max_rate": [0.10501, 0.1038888],
"is_open": [False, False],
"enter_tag": ["", ""],
"leverage": [1.0, 1.0],
"is_short": [False, False],
"open_timestamp": [1517251200000, 1517283000000],
"close_timestamp": [1517265300000, 1517285400000],
"orders": [
[
{
"amount": 0.00957442,
"safe_price": 0.104445,
"ft_order_side": "buy",
"order_filled_timestamp": 1517251200000,
"ft_is_entry": True,
"ft_order_tag": "",
},
{
"amount": 0.00957442,
"safe_price": 0.10496853383458644,
"ft_order_side": "sell",
"order_filled_timestamp": 1517265300000,
"ft_is_entry": False,
"ft_order_tag": "roi",
},
],
[
{
"amount": 0.0097064,
"safe_price": 0.10302485,
"ft_order_side": "buy",
"order_filled_timestamp": 1517283000000,
"ft_is_entry": True,
"ft_order_tag": "",
},
{
"amount": 0.0097064,
"safe_price": 0.10354126528822055,
"ft_order_side": "sell",
"order_filled_timestamp": 1517285400000,
"ft_is_entry": False,
"ft_order_tag": "roi",
},
],
],
}
)
pd.testing.assert_frame_equal(results, expected)
2024-05-12 14:15:27 +00:00
assert "orders" in results.columns
data_pair = processed[pair]
2024-03-24 10:54:25 +00:00
# Called once per order
assert backtesting.strategy.order_filled.call_count == 4
for _, t in results.iterrows():
2024-05-12 14:15:27 +00:00
assert len(t["orders"]) == 2
2020-06-26 07:21:28 +00:00
ln = data_pair.loc[data_pair["date"] == t["open_date"]]
2022-11-05 19:01:05 +00:00
# Check open trade rate aligns to open rate
assert not ln.empty
2018-07-08 18:18:34 +00:00
assert round(ln.iloc[0]["open"], 6) == round(t["open_rate"], 6)
2022-11-05 19:01:05 +00:00
# check close trade rate aligns to close rate or is between high and low
ln1 = data_pair.loc[data_pair["date"] == t["close_date"]]
2024-05-12 14:15:27 +00:00
assert round(ln1.iloc[0]["open"], 6) == round(t["close_rate"], 6) or round(
ln1.iloc[0]["low"], 6
) < round(t["close_rate"], 6) < round(ln1.iloc[0]["high"], 6)
2024-05-12 14:15:27 +00:00
@pytest.mark.parametrize("use_detail", [True, False])
2024-04-27 17:52:48 +00:00
def test_backtest_one_detail(default_conf_usdt, mocker, testdatadir, use_detail) -> None:
2024-05-12 14:15:27 +00:00
default_conf_usdt["use_exit_signal"] = False
2024-04-27 17:52:48 +00:00
patch_exchange(mocker)
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
2024-05-12 14:15:27 +00:00
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
2022-11-05 19:01:05 +00:00
if use_detail:
2024-05-12 14:15:27 +00:00
default_conf_usdt["timeframe_detail"] = "1m"
2022-11-05 19:01:05 +00:00
def advise_entry(df, *args, **kwargs):
# Mock function to force several entries
2024-05-12 14:15:27 +00:00
df.loc[(df["rsi"] < 40), "enter_long"] = 1
2022-11-05 19:01:05 +00:00
return df
def custom_entry_price(proposed_rate, **kwargs):
return proposed_rate * 0.997
2024-05-12 14:15:27 +00:00
default_conf_usdt["max_open_trades"] = 10
2022-11-05 19:01:05 +00:00
backtesting = Backtesting(default_conf_usdt)
backtesting._set_strategy(backtesting.strategylist[0])
backtesting.strategy.populate_entry_trend = advise_entry
backtesting.strategy.custom_entry_price = custom_entry_price
2024-05-12 14:15:27 +00:00
pair = "XRP/ETH"
2022-11-05 19:01:05 +00:00
# Pick a timerange adapted to the pair we use to test
2024-05-12 14:15:27 +00:00
timerange = TimeRange.parse_timerange("20191010-20191013")
data = history.load_data(datadir=testdatadir, timeframe="5m", pairs=[pair], timerange=timerange)
2022-11-05 19:01:05 +00:00
if use_detail:
2024-05-12 14:15:27 +00:00
data_1m = history.load_data(
datadir=testdatadir, timeframe="1m", pairs=[pair], timerange=timerange
)
2022-11-05 19:01:05 +00:00
backtesting.detail_data = data_1m
processed = backtesting.strategy.advise_all_indicators(data)
min_date, max_date = get_timerange(processed)
result = backtesting.backtest(
processed=deepcopy(processed),
start_date=min_date,
end_date=max_date,
)
2024-05-12 14:15:27 +00:00
results = result["results"]
2022-11-05 19:01:05 +00:00
assert not results.empty
# Timeout settings from default_conf = entry: 10, exit: 30
assert len(results) == (2 if use_detail else 3)
2024-05-12 14:15:27 +00:00
assert "orders" in results.columns
2022-11-05 19:01:05 +00:00
data_pair = processed[pair]
data_1m_pair = data_1m[pair] if use_detail else pd.DataFrame()
late_entry = 0
for _, t in results.iterrows():
2024-05-12 14:15:27 +00:00
assert len(t["orders"]) == 2
2022-11-05 19:01:05 +00:00
2024-05-12 14:15:27 +00:00
entryo = t["orders"][0]
entry_ts = datetime.fromtimestamp(entryo["order_filled_timestamp"] // 1000, tz=timezone.utc)
if entry_ts > t["open_date"]:
2022-11-05 19:01:05 +00:00
late_entry += 1
# Get "entry fill" candle
2024-05-12 14:15:27 +00:00
ln = (
data_1m_pair.loc[data_1m_pair["date"] == entry_ts]
if use_detail
else data_pair.loc[data_pair["date"] == entry_ts]
)
2022-11-05 19:01:05 +00:00
# Check open trade rate aligns to open rate
assert not ln.empty
# assert round(ln.iloc[0]["open"], 6) == round(t["open_rate"], 6)
2024-05-12 14:15:27 +00:00
assert (
round(ln.iloc[0]["low"], 6) <= round(t["open_rate"], 6) <= round(ln.iloc[0]["high"], 6)
)
2022-11-05 19:01:05 +00:00
# check close trade rate aligns to close rate or is between high and low
ln1 = data_pair.loc[data_pair["date"] == t["close_date"]]
if use_detail:
ln1_1m = data_1m_pair.loc[data_1m_pair["date"] == t["close_date"]]
assert not ln1.empty or not ln1_1m.empty
else:
assert not ln1.empty
ln2 = ln1_1m if ln1.empty else ln1
2024-05-12 14:15:27 +00:00
assert (
round(ln2.iloc[0]["low"], 6)
<= round(t["close_rate"], 6)
<= round(ln2.iloc[0]["high"], 6)
)
2022-11-05 19:01:05 +00:00
assert late_entry > 0
2024-05-12 14:15:27 +00:00
@pytest.mark.parametrize(
"use_detail,exp_funding_fee, exp_ff_updates",
[
(True, -0.018054162, 11),
(False, -0.01780296, 5),
],
)
2023-01-20 08:37:28 +00:00
def test_backtest_one_detail_futures(
2024-05-12 14:15:27 +00:00
default_conf_usdt, mocker, testdatadir, use_detail, exp_funding_fee, exp_ff_updates
) -> None:
default_conf_usdt["use_exit_signal"] = False
default_conf_usdt["trading_mode"] = "futures"
default_conf_usdt["margin_mode"] = "isolated"
default_conf_usdt["candle_type_def"] = CandleType.FUTURES
2023-01-20 08:37:28 +00:00
2024-04-27 17:52:48 +00:00
patch_exchange(mocker)
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
2024-05-12 14:15:27 +00:00
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
mocker.patch(
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist",
PropertyMock(return_value=["XRP/USDT:USDT"]),
)
mocker.patch(f"{EXMS}.get_maintenance_ratio_and_amt", return_value=(0.01, 0.01))
default_conf_usdt["timeframe"] = "1h"
2023-01-20 08:37:28 +00:00
if use_detail:
2024-05-12 14:15:27 +00:00
default_conf_usdt["timeframe_detail"] = "5m"
2023-01-20 08:37:28 +00:00
def advise_entry(df, *args, **kwargs):
# Mock function to force several entries
2024-05-12 14:15:27 +00:00
df.loc[(df["rsi"] < 40), "enter_long"] = 1
2023-01-20 08:37:28 +00:00
return df
def custom_entry_price(proposed_rate, **kwargs):
return proposed_rate * 0.997
2024-05-12 14:15:27 +00:00
default_conf_usdt["max_open_trades"] = 10
2023-01-20 08:37:28 +00:00
backtesting = Backtesting(default_conf_usdt)
2024-05-12 14:15:27 +00:00
ff_spy = mocker.spy(backtesting.exchange, "calculate_funding_fees")
2023-01-20 08:37:28 +00:00
backtesting._set_strategy(backtesting.strategylist[0])
backtesting.strategy.populate_entry_trend = advise_entry
backtesting.strategy.custom_entry_price = custom_entry_price
2024-05-12 14:15:27 +00:00
pair = "XRP/USDT:USDT"
2023-01-20 08:37:28 +00:00
# Pick a timerange adapted to the pair we use to test
2024-05-12 14:15:27 +00:00
timerange = TimeRange.parse_timerange("20211117-20211119")
data = history.load_data(
datadir=Path(testdatadir),
timeframe="1h",
pairs=[pair],
timerange=timerange,
candle_type=CandleType.FUTURES,
)
2023-01-20 08:37:28 +00:00
backtesting.load_bt_data_detail()
processed = backtesting.strategy.advise_all_indicators(data)
min_date, max_date = get_timerange(processed)
result = backtesting.backtest(
processed=deepcopy(processed),
start_date=min_date,
end_date=max_date,
)
2024-05-12 14:15:27 +00:00
results = result["results"]
2023-01-20 08:37:28 +00:00
assert not results.empty
# Timeout settings from default_conf = entry: 10, exit: 30
assert len(results) == (5 if use_detail else 2)
2024-05-12 14:15:27 +00:00
assert "orders" in results.columns
2023-01-20 08:37:28 +00:00
data_pair = processed[pair]
data_1m_pair = backtesting.detail_data[pair] if use_detail else pd.DataFrame()
late_entry = 0
for _, t in results.iterrows():
2024-05-12 14:15:27 +00:00
assert len(t["orders"]) == 2
2023-01-20 08:37:28 +00:00
2024-05-12 14:15:27 +00:00
entryo = t["orders"][0]
entry_ts = datetime.fromtimestamp(entryo["order_filled_timestamp"] // 1000, tz=timezone.utc)
if entry_ts > t["open_date"]:
2023-01-20 08:37:28 +00:00
late_entry += 1
# Get "entry fill" candle
2024-05-12 14:15:27 +00:00
ln = (
data_1m_pair.loc[data_1m_pair["date"] == entry_ts]
if use_detail
else data_pair.loc[data_pair["date"] == entry_ts]
)
2023-01-20 08:37:28 +00:00
# Check open trade rate aligns to open rate
assert not ln.empty
2024-05-12 14:15:27 +00:00
assert (
round(ln.iloc[0]["low"], 6) <= round(t["open_rate"], 6) <= round(ln.iloc[0]["high"], 6)
)
2023-01-20 08:37:28 +00:00
# check close trade rate aligns to close rate or is between high and low
ln1 = data_pair.loc[data_pair["date"] == t["close_date"]]
if use_detail:
ln1_1m = data_1m_pair.loc[data_1m_pair["date"] == t["close_date"]]
assert not ln1.empty or not ln1_1m.empty
else:
assert not ln1.empty
ln2 = ln1_1m if ln1.empty else ln1
2024-05-12 14:15:27 +00:00
assert (
round(ln2.iloc[0]["low"], 6)
<= round(t["close_rate"], 6)
<= round(ln2.iloc[0]["high"], 6)
)
assert pytest.approx(Trade.trades[1].funding_fees) == exp_funding_fee
assert ff_spy.call_count == exp_ff_updates
2023-01-20 08:37:28 +00:00
# assert late_entry > 0
2024-05-12 14:15:27 +00:00
@pytest.mark.parametrize(
"use_detail,entries,max_stake,ff_updates,expected_ff",
[
(True, 50, 3000, 54, -1.18038144),
(False, 6, 360, 10, -0.14679994),
],
)
def test_backtest_one_detail_futures_funding_fees(
2024-05-12 14:15:27 +00:00
default_conf_usdt,
fee,
mocker,
testdatadir,
use_detail,
entries,
max_stake,
ff_updates,
expected_ff,
) -> None:
2023-12-10 12:21:05 +00:00
"""
Funding fees are expected to differ, as the maximum position size differs.
"""
2024-05-12 14:15:27 +00:00
default_conf_usdt["use_exit_signal"] = False
default_conf_usdt["trading_mode"] = "futures"
default_conf_usdt["margin_mode"] = "isolated"
default_conf_usdt["candle_type_def"] = CandleType.FUTURES
default_conf_usdt["minimal_roi"] = {"0": 1}
default_conf_usdt["dry_run_wallet"] = 100000
mocker.patch(f"{EXMS}.get_fee", fee)
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
2024-05-12 14:15:27 +00:00
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
mocker.patch(
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist",
PropertyMock(return_value=["XRP/USDT:USDT"]),
)
mocker.patch(f"{EXMS}.get_maintenance_ratio_and_amt", return_value=(0.01, 0.01))
default_conf_usdt["timeframe"] = "1h"
if use_detail:
2024-05-12 14:15:27 +00:00
default_conf_usdt["timeframe_detail"] = "5m"
patch_exchange(mocker)
def advise_entry(df, *args, **kwargs):
# Mock function to force several entries
2024-05-12 14:15:27 +00:00
df.loc[:, "enter_long"] = 1
return df
def adjust_trade_position(trade, current_time, **kwargs):
if current_time > datetime(2021, 11, 18, 2, 0, 0, tzinfo=timezone.utc):
return None
2024-05-12 14:15:27 +00:00
return default_conf_usdt["stake_amount"]
2024-05-12 14:15:27 +00:00
default_conf_usdt["max_open_trades"] = 1
backtesting = Backtesting(default_conf_usdt)
2024-05-12 14:15:27 +00:00
ff_spy = mocker.spy(backtesting.exchange, "calculate_funding_fees")
backtesting._set_strategy(backtesting.strategylist[0])
backtesting.strategy.populate_entry_trend = advise_entry
backtesting.strategy.adjust_trade_position = adjust_trade_position
backtesting.strategy.leverage = lambda **kwargs: 1
backtesting.strategy.position_adjustment_enable = True
2024-05-12 14:15:27 +00:00
pair = "XRP/USDT:USDT"
# Pick a timerange adapted to the pair we use to test
2024-05-12 14:15:27 +00:00
timerange = TimeRange.parse_timerange("20211117-20211119")
data = history.load_data(
datadir=Path(testdatadir),
timeframe="1h",
pairs=[pair],
timerange=timerange,
candle_type=CandleType.FUTURES,
)
backtesting.load_bt_data_detail()
processed = backtesting.strategy.advise_all_indicators(data)
min_date, max_date = get_timerange(processed)
result = backtesting.backtest(
processed=deepcopy(processed),
start_date=min_date,
end_date=max_date,
)
2024-05-12 14:15:27 +00:00
results = result["results"]
assert not results.empty
# Only one result - as we're not selling.
assert len(results) == 1
2024-05-12 14:15:27 +00:00
assert "orders" in results.columns
# funding_fees have been calculated for each funding-fee candle
# the trade is open for 26 hours - hence we expect the 8h fee to apply 4 times.
# Additional counts will happen due each successful entry, which needs to call this, too.
assert ff_spy.call_count == ff_updates
for t in Trade.trades:
# At least 6 adjustment orders
assert t.nr_of_successful_entries == entries
# Funding fees will vary depending on the number of adjustment orders
# That number is a lot higher with detail data.
assert t.max_stake_amount == max_stake
2023-12-10 12:21:05 +00:00
assert pytest.approx(t.funding_fees) == expected_ff
def test_backtest_timedout_entry_orders(default_conf, fee, mocker, testdatadir) -> None:
# This strategy intentionally places unfillable orders.
2024-05-12 14:15:27 +00:00
default_conf["strategy"] = "StrategyTestV3CustomEntryPrice"
default_conf["startup_candle_count"] = 0
# Cancel unfilled order after 4 minutes on 5m timeframe.
default_conf["unfilledtimeout"] = {"entry": 4}
2024-05-12 14:15:27 +00:00
mocker.patch(f"{EXMS}.get_fee", fee)
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
2024-05-12 14:15:27 +00:00
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
patch_exchange(mocker)
2024-05-12 14:15:27 +00:00
default_conf["max_open_trades"] = 1
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
# Testing dataframe contains 11 candles. Expecting 10 timed out orders.
2024-05-12 14:15:27 +00:00
timerange = TimeRange("date", "date", 1517227800, 1517231100)
data = history.load_data(
datadir=testdatadir, timeframe="5m", pairs=["UNITTEST/BTC"], timerange=timerange
)
min_date, max_date = get_timerange(data)
result = backtesting.backtest(
processed=deepcopy(data),
start_date=min_date,
end_date=max_date,
)
2024-05-12 14:15:27 +00:00
assert result["timedout_entry_orders"] == 10
def test_backtest_1min_timeframe(default_conf, fee, mocker, testdatadir) -> None:
2024-05-12 14:15:27 +00:00
default_conf["use_exit_signal"] = False
default_conf["max_open_trades"] = 1
mocker.patch(f"{EXMS}.get_fee", fee)
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
2024-05-12 14:15:27 +00:00
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
2018-06-17 20:32:56 +00:00
patch_exchange(mocker)
2018-04-21 22:19:11 +00:00
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
# Run a backtesting for an exiting 1min timeframe
2024-05-12 14:15:27 +00:00
timerange = TimeRange.parse_timerange("1510688220-1510700340")
data = history.load_data(
datadir=testdatadir, timeframe="1m", pairs=["UNITTEST/BTC"], timerange=timerange
)
processed = backtesting.strategy.advise_all_indicators(data)
2019-12-17 22:06:03 +00:00
min_date, max_date = get_timerange(processed)
results = backtesting.backtest(
2019-12-13 23:12:44 +00:00
processed=processed,
start_date=min_date,
end_date=max_date,
)
2024-05-12 14:15:27 +00:00
assert not results["results"].empty
assert len(results["results"]) == 1
2022-04-02 14:12:19 +00:00
def test_backtest_trim_no_data_left(default_conf, fee, mocker, testdatadir) -> None:
2024-05-12 14:15:27 +00:00
default_conf["use_exit_signal"] = False
default_conf["max_open_trades"] = 10
2024-05-12 14:15:27 +00:00
mocker.patch(f"{EXMS}.get_fee", fee)
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
2024-05-12 14:15:27 +00:00
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
2022-04-02 14:12:19 +00:00
patch_exchange(mocker)
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
2024-05-12 14:15:27 +00:00
timerange = TimeRange("date", None, 1517227800, 0)
2022-04-02 14:12:19 +00:00
backtesting.required_startup = 100
backtesting.timerange = timerange
2024-05-12 14:15:27 +00:00
data = history.load_data(
datadir=testdatadir, timeframe="5m", pairs=["UNITTEST/BTC"], timerange=timerange
)
df = data["UNITTEST/BTC"]
df["date"] = df.loc[:, "date"] - timedelta(days=1)
2022-04-02 14:12:19 +00:00
# Trimming 100 candles, so after 2nd trimming, no candle is left.
df = df.iloc[:100]
2024-05-12 14:15:27 +00:00
data["XRP/USDT"] = df
2022-04-02 14:12:19 +00:00
processed = backtesting.strategy.advise_all_indicators(data)
min_date, max_date = get_timerange(processed)
backtesting.backtest(
processed=deepcopy(processed),
start_date=min_date,
end_date=max_date,
)
2019-09-07 18:56:03 +00:00
def test_processed(default_conf, mocker, testdatadir) -> None:
2018-06-17 20:32:56 +00:00
patch_exchange(mocker)
2018-04-21 22:19:11 +00:00
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
2024-05-12 14:15:27 +00:00
dict_of_tickerrows = load_data_test("raise", testdatadir)
dataframes = backtesting.strategy.advise_all_indicators(dict_of_tickerrows)
2024-05-12 14:15:27 +00:00
dataframe = dataframes["UNITTEST/BTC"]
cols = dataframe.columns
# assert the dataframe got some of the indicator columns
2024-05-12 14:15:27 +00:00
for col in ["close", "high", "low", "open", "date", "ema10", "rsi", "fastd", "plus_di"]:
assert col in cols
def test_backtest_dataprovider_analyzed_df(default_conf, fee, mocker, testdatadir) -> None:
2024-05-12 14:15:27 +00:00
default_conf["use_exit_signal"] = False
default_conf["max_open_trades"] = 10
default_conf["runmode"] = "backtest"
mocker.patch(f"{EXMS}.get_fee", fee)
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=100000)
patch_exchange(mocker)
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
2024-05-12 14:15:27 +00:00
timerange = TimeRange("date", None, 1517227800, 0)
data = history.load_data(
datadir=testdatadir, timeframe="5m", pairs=["UNITTEST/BTC"], timerange=timerange
)
processed = backtesting.strategy.advise_all_indicators(data)
min_date, max_date = get_timerange(processed)
count = 0
def tmp_confirm_entry(pair, current_time, **kwargs):
2023-08-15 14:53:21 +00:00
nonlocal count
dp = backtesting.strategy.dp
df, _ = dp.get_analyzed_dataframe(pair, backtesting.strategy.timeframe)
current_candle = df.iloc[-1].squeeze()
2024-05-12 14:15:27 +00:00
assert current_candle["enter_long"] == 1
2024-05-12 14:15:27 +00:00
candle_date = timeframe_to_next_date(backtesting.strategy.timeframe, current_candle["date"])
assert candle_date == current_time
# These asserts don't properly raise as they are nested,
# therefore we increment count and assert for that.
df = dp.get_pair_dataframe(pair, backtesting.strategy.timeframe)
2024-05-12 14:15:27 +00:00
prior_time = timeframe_to_prev_date(
backtesting.strategy.timeframe, candle_date - timedelta(seconds=1)
)
assert prior_time == df.iloc[-1].squeeze()["date"]
assert df.iloc[-1].squeeze()["date"] < current_time
2023-08-15 14:53:21 +00:00
count += 1
backtesting.strategy.confirm_trade_entry = tmp_confirm_entry
backtesting.backtest(
processed=deepcopy(processed),
start_date=min_date,
end_date=max_date,
)
assert count == 5
def test_backtest_pricecontours_protections(default_conf, fee, mocker, testdatadir) -> None:
2020-12-02 06:42:39 +00:00
# While this test IS a copy of test_backtest_pricecontours, it's needed to ensure
# results do not carry-over to the next run, which is not given by using parametrize.
patch_exchange(mocker)
2024-05-12 14:15:27 +00:00
default_conf["protections"] = [
{
"method": "CooldownPeriod",
"stop_duration": 3,
2024-05-12 14:15:27 +00:00
}
]
2024-05-12 14:15:27 +00:00
default_conf["enable_protections"] = True
default_conf["timeframe"] = "1m"
default_conf["max_open_trades"] = 1
mocker.patch(f"{EXMS}.get_fee", fee)
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
2024-05-12 14:15:27 +00:00
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
tests = [
2024-05-12 14:15:27 +00:00
["sine", 9],
["raise", 10],
["lower", 0],
["sine", 9],
["raise", 10],
]
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
2022-03-09 06:03:37 +00:00
# While entry-signals are unrealistic, running backtesting
# over and over again should not cause different results
for [contour, numres] in tests:
2022-01-23 16:42:18 +00:00
# Debug output for random test failure
print(f"{contour}, {numres}")
data = load_data_test(contour, testdatadir)
processed = backtesting.strategy.advise_all_indicators(data)
min_date, max_date = get_timerange(processed)
assert isinstance(processed, dict)
results = backtesting.backtest(
processed=processed,
start_date=min_date,
end_date=max_date,
)
2024-05-12 14:15:27 +00:00
assert len(results["results"]) == numres
@pytest.mark.parametrize(
"protections,contour,expected",
[
(None, "sine", 35),
(None, "raise", 19),
(None, "lower", 0),
(None, "sine", 35),
(None, "raise", 19),
([{"method": "CooldownPeriod", "stop_duration": 3}], "sine", 9),
([{"method": "CooldownPeriod", "stop_duration": 3}], "raise", 10),
([{"method": "CooldownPeriod", "stop_duration": 3}], "lower", 0),
([{"method": "CooldownPeriod", "stop_duration": 3}], "sine", 9),
([{"method": "CooldownPeriod", "stop_duration": 3}], "raise", 10),
],
)
def test_backtest_pricecontours(
default_conf, mocker, testdatadir, protections, contour, expected
) -> None:
2020-12-02 06:42:39 +00:00
if protections:
2024-05-12 14:15:27 +00:00
default_conf["protections"] = protections
default_conf["enable_protections"] = True
2020-12-02 06:42:39 +00:00
2024-04-27 17:52:48 +00:00
patch_exchange(mocker)
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
2024-05-12 14:15:27 +00:00
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
2022-03-09 06:03:37 +00:00
# While entry-signals are unrealistic, running backtesting
2020-12-02 06:42:39 +00:00
# over and over again should not cause different results
2024-05-12 14:15:27 +00:00
default_conf["timeframe"] = "1m"
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
data = load_data_test(contour, testdatadir)
processed = backtesting.strategy.advise_all_indicators(data)
min_date, max_date = get_timerange(processed)
assert isinstance(processed, dict)
backtesting.strategy.max_open_trades = 1
2024-05-12 14:15:27 +00:00
backtesting.config.update({"max_open_trades": 1})
results = backtesting.backtest(
processed=processed,
start_date=min_date,
end_date=max_date,
)
2024-05-12 14:15:27 +00:00
assert len(results["results"]) == expected
2019-09-07 18:56:03 +00:00
def test_backtest_clash_buy_sell(mocker, default_conf, testdatadir):
# Override the default buy trend function in our StrategyTest
2018-06-26 05:08:09 +00:00
def fun(dataframe=None, pair=None):
buy_value = 1
sell_value = 1
return _trend(dataframe, buy_value, sell_value)
2024-05-12 14:15:27 +00:00
default_conf["max_open_trades"] = 10
2019-09-07 18:56:03 +00:00
backtest_conf = _make_backtest_conf(mocker, conf=default_conf, datadir=testdatadir)
2018-04-21 22:19:11 +00:00
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
2021-09-22 18:42:31 +00:00
backtesting.strategy.advise_entry = fun # Override
backtesting.strategy.advise_exit = fun # Override
result = backtesting.backtest(**backtest_conf)
2024-05-12 14:15:27 +00:00
assert result["results"].empty
2019-09-07 18:56:03 +00:00
def test_backtest_only_sell(mocker, default_conf, testdatadir):
# Override the default buy trend function in our StrategyTest
2018-06-26 05:08:09 +00:00
def fun(dataframe=None, pair=None):
buy_value = 0
sell_value = 1
return _trend(dataframe, buy_value, sell_value)
2024-05-12 14:15:27 +00:00
default_conf["max_open_trades"] = 10
2019-09-07 18:56:03 +00:00
backtest_conf = _make_backtest_conf(mocker, conf=default_conf, datadir=testdatadir)
2018-04-21 22:19:11 +00:00
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
2021-09-22 18:42:31 +00:00
backtesting.strategy.advise_entry = fun # Override
backtesting.strategy.advise_exit = fun # Override
result = backtesting.backtest(**backtest_conf)
2024-05-12 14:15:27 +00:00
assert result["results"].empty
2019-09-07 18:56:03 +00:00
def test_backtest_alternate_buy_sell(default_conf, fee, mocker, testdatadir):
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
2024-05-12 14:15:27 +00:00
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
mocker.patch(f"{EXMS}.get_fee", fee)
default_conf["max_open_trades"] = 10
default_conf["runmode"] = "backtest"
backtest_conf = _make_backtest_conf(
mocker, conf=default_conf, pair="UNITTEST/BTC", datadir=testdatadir
)
default_conf["timeframe"] = "1m"
2018-04-21 22:19:11 +00:00
backtesting = Backtesting(default_conf)
backtesting.required_startup = 0
backtesting._set_strategy(backtesting.strategylist[0])
2021-09-22 18:42:31 +00:00
backtesting.strategy.advise_entry = _trend_alternate # Override
backtesting.strategy.advise_exit = _trend_alternate # Override
result = backtesting.backtest(**backtest_conf)
# 200 candles in backtest data
# won't buy on first (shifted by 1)
# 100 buys signals
2024-05-12 14:15:27 +00:00
results = result["results"]
assert len(results) == 100
# Cached data should be 200
2024-05-12 14:15:27 +00:00
analyzed_df = backtesting.dataprovider.get_analyzed_dataframe("UNITTEST/BTC", "1m")[0]
assert len(analyzed_df) == 200
# Expect last candle to be 1 below end date (as the last candle is assumed as "incomplete"
# during backtesting)
2024-05-12 14:15:27 +00:00
expected_last_candle_date = backtest_conf["end_date"] - timedelta(minutes=1)
assert analyzed_df.iloc[-1]["date"].to_pydatetime() == expected_last_candle_date
# One trade was force-closed at the end
2024-05-12 14:15:27 +00:00
assert len(results.loc[results["is_open"]]) == 0
2024-05-12 14:15:27 +00:00
@pytest.mark.parametrize("pair", ["ADA/BTC", "LTC/BTC"])
@pytest.mark.parametrize("tres", [0, 20, 30])
2019-09-07 18:56:03 +00:00
def test_backtest_multi_pair(default_conf, fee, mocker, tres, pair, testdatadir):
2018-11-05 19:03:04 +00:00
def _trend_alternate_hold(dataframe=None, metadata=None):
"""
2019-03-26 17:53:16 +00:00
Buy every xth candle - sell every other xth -2 (hold on to pairs a bit)
2018-11-05 19:03:04 +00:00
"""
2024-05-12 14:15:27 +00:00
if metadata["pair"] in ("ETH/BTC", "LTC/BTC"):
multi = 20
else:
multi = 18
2024-05-12 14:15:27 +00:00
dataframe["enter_long"] = np.where(dataframe.index % multi == 0, 1, 0)
dataframe["exit_long"] = np.where((dataframe.index + multi - 2) % multi == 0, 1, 0)
dataframe["enter_short"] = 0
dataframe["exit_short"] = 0
2018-11-05 19:03:04 +00:00
return dataframe
2024-05-12 14:15:27 +00:00
default_conf["runmode"] = "backtest"
mocker.patch(f"{EXMS}.get_min_pair_stake_amount", return_value=0.00001)
2024-05-12 14:15:27 +00:00
mocker.patch(f"{EXMS}.get_max_pair_stake_amount", return_value=float("inf"))
mocker.patch(f"{EXMS}.get_fee", fee)
2018-11-06 19:37:59 +00:00
patch_exchange(mocker)
2024-05-12 14:15:27 +00:00
pairs = ["ADA/BTC", "DASH/BTC", "ETH/BTC", "LTC/BTC", "NXT/BTC"]
data = history.load_data(datadir=testdatadir, timeframe="5m", pairs=pairs)
# Only use 500 lines to increase performance
2018-11-05 19:03:04 +00:00
data = trim_dictlist(data, -500)
# Remove data for one pair from the beginning of the data
if tres > 0:
data[pair] = data[pair][tres:].reset_index()
2024-05-12 14:15:27 +00:00
default_conf["timeframe"] = "5m"
default_conf["max_open_trades"] = 3
2018-11-05 19:03:04 +00:00
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
2021-09-22 18:42:31 +00:00
backtesting.strategy.advise_entry = _trend_alternate_hold # Override
backtesting.strategy.advise_exit = _trend_alternate_hold # Override
2018-11-05 19:03:04 +00:00
processed = backtesting.strategy.advise_all_indicators(data)
min_date, max_date = get_timerange(processed)
2018-11-05 19:03:04 +00:00
backtest_conf = {
2024-05-12 14:15:27 +00:00
"processed": deepcopy(processed),
"start_date": min_date,
"end_date": max_date,
2018-11-05 19:03:04 +00:00
}
2019-12-13 23:12:44 +00:00
results = backtesting.backtest(**backtest_conf)
2018-11-05 19:03:04 +00:00
# Make sure we have parallel trades
2024-05-12 14:15:27 +00:00
assert len(evaluate_result_multi(results["results"], "5m", 2)) > 0
2018-11-05 19:03:04 +00:00
# make sure we don't have trades with more than configured max_open_trades
2024-05-12 14:15:27 +00:00
assert len(evaluate_result_multi(results["results"], "5m", 3)) == 0
2018-11-05 19:03:04 +00:00
# Cached data correctly removed amounts
offset = 1 if tres == 0 else 0
removed_candles = len(data[pair]) - offset
2024-05-12 14:15:27 +00:00
assert len(backtesting.dataprovider.get_analyzed_dataframe(pair, "5m")[0]) == removed_candles
assert (
len(backtesting.dataprovider.get_analyzed_dataframe("NXT/BTC", "5m")[0])
== len(data["NXT/BTC"]) - 1
)
backtesting.strategy.max_open_trades = 1
2024-05-12 14:15:27 +00:00
backtesting.config.update({"max_open_trades": 1})
2018-11-05 19:03:04 +00:00
backtest_conf = {
2024-05-12 14:15:27 +00:00
"processed": deepcopy(processed),
"start_date": min_date,
"end_date": max_date,
2018-11-05 19:03:04 +00:00
}
2019-12-13 23:12:44 +00:00
results = backtesting.backtest(**backtest_conf)
2024-05-12 14:15:27 +00:00
assert len(evaluate_result_multi(results["results"], "5m", 1)) == 0
2018-11-05 19:03:04 +00:00
2019-09-08 07:54:15 +00:00
def test_backtest_start_timerange(default_conf, mocker, caplog, testdatadir):
2019-12-27 09:29:06 +00:00
patch_exchange(mocker)
2024-05-12 14:15:27 +00:00
mocker.patch("freqtrade.optimize.backtesting.Backtesting.backtest")
mocker.patch("freqtrade.optimize.backtesting.generate_backtest_stats")
mocker.patch("freqtrade.optimize.backtesting.show_backtest_results")
mocker.patch(
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist",
PropertyMock(return_value=["UNITTEST/BTC"]),
)
patched_configuration_load_config_file(mocker, default_conf)
args = [
2024-05-12 14:15:27 +00:00
"backtesting",
"--config",
"config.json",
"--strategy",
CURRENT_TEST_STRATEGY,
"--datadir",
str(testdatadir),
"--timeframe",
"1m",
"--timerange",
"1510694220-1510700340",
"--enable-position-stacking",
"--disable-max-market-positions",
]
args = get_args(args)
start_backtesting(args)
# check the logs, that will contain the backtest result
exists = [
2024-05-12 14:15:27 +00:00
"Parameter -i/--timeframe detected ... Using timeframe: 1m ...",
"Ignoring max_open_trades (--disable-max-market-positions was used) ...",
"Parameter --timerange detected: 1510694220-1510700340 ...",
f"Using data directory: {testdatadir} ...",
2024-05-12 15:51:21 +00:00
"Loading data from 2017-11-14 20:57:00 up to 2017-11-14 22:59:00 (0 days).",
"Backtesting with data from 2017-11-14 21:17:00 up to 2017-11-14 22:59:00 (0 days).",
2024-05-12 14:15:27 +00:00
"Parameter --enable-position-stacking detected ...",
]
for line in exists:
assert log_has(line, caplog)
2018-07-28 05:55:59 +00:00
@pytest.mark.filterwarnings("ignore:deprecated")
2019-09-08 07:54:15 +00:00
def test_backtest_start_multi_strat(default_conf, mocker, caplog, testdatadir):
2024-05-12 14:15:27 +00:00
default_conf.update(
{
"use_exit_signal": True,
"exit_profit_only": False,
"exit_profit_offset": 0.0,
"ignore_roi_if_entry_signal": False,
}
)
2019-12-27 09:29:06 +00:00
patch_exchange(mocker)
2024-05-12 14:15:27 +00:00
backtestmock = MagicMock(
return_value={
"results": pd.DataFrame(columns=BT_DATA_COLUMNS),
"config": default_conf,
"locks": [],
"rejected_signals": 20,
"timedout_entry_orders": 0,
"timedout_exit_orders": 0,
"canceled_trade_entries": 0,
"canceled_entry_orders": 0,
"replaced_entry_orders": 0,
"final_balance": 1000,
}
)
mocker.patch(
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist",
PropertyMock(return_value=["UNITTEST/BTC"]),
)
mocker.patch("freqtrade.optimize.backtesting.Backtesting.backtest", backtestmock)
2020-06-07 09:35:02 +00:00
text_table_mock = MagicMock()
2024-03-30 12:20:53 +00:00
tag_metrics_mock = MagicMock()
2020-06-07 09:35:02 +00:00
strattable_mock = MagicMock()
strat_summary = MagicMock()
2020-05-25 18:00:05 +00:00
2024-05-12 14:15:27 +00:00
mocker.patch.multiple(
"freqtrade.optimize.optimize_reports.bt_output",
text_table_bt_results=text_table_mock,
text_table_strategy=strattable_mock,
)
mocker.patch.multiple(
"freqtrade.optimize.optimize_reports.optimize_reports",
generate_pair_metrics=MagicMock(),
generate_tag_metrics=tag_metrics_mock,
generate_strategy_comparison=strat_summary,
generate_daily_stats=MagicMock(),
)
patched_configuration_load_config_file(mocker, default_conf)
2018-07-28 05:55:59 +00:00
args = [
2024-05-12 14:15:27 +00:00
"backtesting",
"--config",
"config.json",
"--datadir",
str(testdatadir),
"--strategy-path",
str(Path(__file__).parents[1] / "strategy/strats"),
"--timeframe",
"1m",
"--timerange",
"1510694220-1510700340",
"--enable-position-stacking",
"--disable-max-market-positions",
"--strategy-list",
CURRENT_TEST_STRATEGY,
2024-05-12 14:15:27 +00:00
"StrategyTestV2",
2018-07-28 05:55:59 +00:00
]
args = get_args(args)
start_backtesting(args)
2018-07-28 05:55:59 +00:00
# 2 backtests, 4 tables
assert backtestmock.call_count == 2
2020-06-07 09:35:02 +00:00
assert text_table_mock.call_count == 4
assert strattable_mock.call_count == 1
2024-03-30 12:20:53 +00:00
assert tag_metrics_mock.call_count == 4
2020-06-07 09:35:02 +00:00
assert strat_summary.call_count == 1
2018-07-28 05:55:59 +00:00
# check the logs, that will contain the backtest result
exists = [
2024-05-12 14:15:27 +00:00
"Parameter -i/--timeframe detected ... Using timeframe: 1m ...",
"Ignoring max_open_trades (--disable-max-market-positions was used) ...",
"Parameter --timerange detected: 1510694220-1510700340 ...",
f"Using data directory: {testdatadir} ...",
2024-05-12 15:51:21 +00:00
"Loading data from 2017-11-14 20:57:00 up to 2017-11-14 22:59:00 (0 days).",
"Backtesting with data from 2017-11-14 21:17:00 up to 2017-11-14 22:59:00 (0 days).",
2024-05-12 14:15:27 +00:00
"Parameter --enable-position-stacking detected ...",
f"Running backtesting for Strategy {CURRENT_TEST_STRATEGY}",
"Running backtesting for Strategy StrategyTestV2",
2018-07-28 05:55:59 +00:00
]
for line in exists:
assert log_has(line, caplog)
def test_backtest_start_multi_strat_nomock(default_conf, mocker, caplog, testdatadir, capsys):
2024-05-12 14:15:27 +00:00
default_conf.update(
{
"use_exit_signal": True,
"exit_profit_only": False,
"exit_profit_offset": 0.0,
"ignore_roi_if_entry_signal": False,
}
)
patch_exchange(mocker)
2024-05-12 14:15:27 +00:00
result1 = pd.DataFrame(
{
2024-05-12 14:15:27 +00:00
"pair": ["XRP/BTC", "LTC/BTC"],
"profit_ratio": [0.0, 0.0],
"profit_abs": [0.0, 0.0],
"open_date": pd.to_datetime(
[
"2018-01-29 18:40:00",
"2018-01-30 03:30:00",
],
utc=True,
),
"close_date": pd.to_datetime(
[
"2018-01-29 20:45:00",
"2018-01-30 05:35:00",
],
utc=True,
),
"trade_duration": [235, 40],
"is_open": [False, False],
"stake_amount": [0.01, 0.01],
"open_rate": [0.104445, 0.10302485],
"close_rate": [0.104969, 0.103541],
"is_short": [False, False],
"exit_reason": [ExitType.ROI, ExitType.ROI],
}
)
result2 = pd.DataFrame(
{
2024-05-12 14:15:27 +00:00
"pair": ["XRP/BTC", "LTC/BTC", "ETH/BTC"],
"profit_ratio": [0.03, 0.01, 0.1],
"profit_abs": [0.01, 0.02, 0.2],
"open_date": pd.to_datetime(
["2018-01-29 18:40:00", "2018-01-30 03:30:00", "2018-01-30 05:30:00"], utc=True
),
"close_date": pd.to_datetime(
["2018-01-29 20:45:00", "2018-01-30 05:35:00", "2018-01-30 08:30:00"], utc=True
),
"trade_duration": [47, 40, 20],
"is_open": [False, False, False],
"stake_amount": [0.01, 0.01, 0.01],
"open_rate": [0.104445, 0.10302485, 0.122541],
"close_rate": [0.104969, 0.103541, 0.123541],
"is_short": [False, False, False],
"exit_reason": [ExitType.ROI, ExitType.ROI, ExitType.STOP_LOSS],
}
2024-05-12 14:15:27 +00:00
)
backtestmock = MagicMock(
side_effect=[
{
"results": result1,
"config": default_conf,
"locks": [],
"rejected_signals": 20,
"timedout_entry_orders": 0,
"timedout_exit_orders": 0,
"canceled_trade_entries": 0,
"canceled_entry_orders": 0,
"replaced_entry_orders": 0,
"final_balance": 1000,
},
{
"results": result2,
"config": default_conf,
"locks": [],
"rejected_signals": 20,
"timedout_entry_orders": 0,
"timedout_exit_orders": 0,
"canceled_trade_entries": 0,
"canceled_entry_orders": 0,
"replaced_entry_orders": 0,
"final_balance": 1000,
},
]
)
mocker.patch(
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist",
PropertyMock(return_value=["UNITTEST/BTC"]),
)
mocker.patch("freqtrade.optimize.backtesting.Backtesting.backtest", backtestmock)
patched_configuration_load_config_file(mocker, default_conf)
args = [
2024-05-12 14:15:27 +00:00
"backtesting",
"--config",
"config.json",
"--datadir",
str(testdatadir),
"--strategy-path",
str(Path(__file__).parents[1] / "strategy/strats"),
"--timeframe",
"1m",
"--timerange",
"1510694220-1510700340",
"--enable-position-stacking",
"--disable-max-market-positions",
"--breakdown",
"day",
"--strategy-list",
CURRENT_TEST_STRATEGY,
2024-05-12 14:15:27 +00:00
"StrategyTestV2",
]
args = get_args(args)
start_backtesting(args)
# check the logs, that will contain the backtest result
exists = [
2024-05-12 14:15:27 +00:00
"Parameter -i/--timeframe detected ... Using timeframe: 1m ...",
"Ignoring max_open_trades (--disable-max-market-positions was used) ...",
"Parameter --timerange detected: 1510694220-1510700340 ...",
f"Using data directory: {testdatadir} ...",
2024-05-12 15:51:21 +00:00
"Loading data from 2017-11-14 20:57:00 up to 2017-11-14 22:59:00 (0 days).",
"Backtesting with data from 2017-11-14 21:17:00 up to 2017-11-14 22:59:00 (0 days).",
2024-05-12 14:15:27 +00:00
"Parameter --enable-position-stacking detected ...",
f"Running backtesting for Strategy {CURRENT_TEST_STRATEGY}",
"Running backtesting for Strategy StrategyTestV2",
]
for line in exists:
assert log_has(line, caplog)
captured = capsys.readouterr()
2024-05-12 14:15:27 +00:00
assert "BACKTESTING REPORT" in captured.out
assert "EXIT REASON STATS" in captured.out
assert "DAY BREAKDOWN" in captured.out
assert "LEFT OPEN TRADES REPORT" in captured.out
assert "2017-11-14 21:17:00 -> 2017-11-14 22:59:00 | Max open trades : 1" in captured.out
assert "STRATEGY SUMMARY" in captured.out
2021-08-14 14:56:49 +00:00
@pytest.mark.filterwarnings("ignore:deprecated")
2024-05-12 14:15:27 +00:00
def test_backtest_start_futures_noliq(default_conf_usdt, mocker, caplog, testdatadir, capsys):
# Tests detail-data loading
2024-05-12 14:15:27 +00:00
default_conf_usdt.update(
{
"trading_mode": "futures",
"margin_mode": "isolated",
"use_exit_signal": True,
"exit_profit_only": False,
"exit_profit_offset": 0.0,
"ignore_roi_if_entry_signal": False,
"strategy": CURRENT_TEST_STRATEGY,
}
)
patch_exchange(mocker)
2024-05-12 14:15:27 +00:00
mocker.patch(
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist",
PropertyMock(return_value=["HULUMULU/USDT", "XRP/USDT:USDT"]),
)
# mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest', backtestmock)
patched_configuration_load_config_file(mocker, default_conf_usdt)
args = [
2024-05-12 14:15:27 +00:00
"backtesting",
"--config",
"config.json",
"--datadir",
str(testdatadir),
"--strategy-path",
str(Path(__file__).parents[1] / "strategy/strats"),
"--timeframe",
"1h",
]
args = get_args(args)
with pytest.raises(OperationalException, match=r"Pairs .* got no leverage tiers available\."):
start_backtesting(args)
2022-01-22 10:37:28 +00:00
@pytest.mark.filterwarnings("ignore:deprecated")
2024-05-12 14:15:27 +00:00
def test_backtest_start_nomock_futures(default_conf_usdt, mocker, caplog, testdatadir, capsys):
2022-01-22 10:37:28 +00:00
# Tests detail-data loading
2024-05-12 14:15:27 +00:00
default_conf_usdt.update(
{
"trading_mode": "futures",
"margin_mode": "isolated",
"use_exit_signal": True,
"exit_profit_only": False,
"exit_profit_offset": 0.0,
"ignore_roi_if_entry_signal": False,
"strategy": CURRENT_TEST_STRATEGY,
}
)
2022-01-22 10:37:28 +00:00
patch_exchange(mocker)
2024-05-12 14:15:27 +00:00
result1 = pd.DataFrame(
2022-01-22 10:37:28 +00:00
{
2024-05-12 14:15:27 +00:00
"pair": ["XRP/USDT:USDT", "XRP/USDT:USDT"],
"profit_ratio": [0.0, 0.0],
"profit_abs": [0.0, 0.0],
"open_date": pd.to_datetime(
[
"2021-11-18 18:00:00",
"2021-11-18 03:00:00",
],
utc=True,
),
"close_date": pd.to_datetime(
[
"2021-11-18 20:00:00",
"2021-11-18 05:00:00",
],
utc=True,
),
"trade_duration": [235, 40],
"is_open": [False, False],
"is_short": [False, False],
"stake_amount": [0.01, 0.01],
"open_rate": [0.104445, 0.10302485],
"close_rate": [0.104969, 0.103541],
"exit_reason": [ExitType.ROI, ExitType.ROI],
}
)
result2 = pd.DataFrame(
2022-01-22 10:37:28 +00:00
{
2024-05-12 14:15:27 +00:00
"pair": ["XRP/USDT:USDT", "XRP/USDT:USDT", "XRP/USDT:USDT"],
"profit_ratio": [0.03, 0.01, 0.1],
"profit_abs": [0.01, 0.02, 0.2],
"open_date": pd.to_datetime(
["2021-11-19 18:00:00", "2021-11-19 03:00:00", "2021-11-19 05:00:00"], utc=True
),
"close_date": pd.to_datetime(
["2021-11-19 20:00:00", "2021-11-19 05:00:00", "2021-11-19 08:00:00"], utc=True
),
"trade_duration": [47, 40, 20],
"is_open": [False, False, False],
"is_short": [False, False, False],
"stake_amount": [0.01, 0.01, 0.01],
"open_rate": [0.104445, 0.10302485, 0.122541],
"close_rate": [0.104969, 0.103541, 0.123541],
"exit_reason": [ExitType.ROI, ExitType.ROI, ExitType.STOP_LOSS],
2022-01-22 10:37:28 +00:00
}
2024-05-12 14:15:27 +00:00
)
backtestmock = MagicMock(
side_effect=[
{
"results": result1,
"config": default_conf_usdt,
"locks": [],
"rejected_signals": 20,
"timedout_entry_orders": 0,
"timedout_exit_orders": 0,
"canceled_trade_entries": 0,
"canceled_entry_orders": 0,
"replaced_entry_orders": 0,
"final_balance": 1000,
},
{
"results": result2,
"config": default_conf_usdt,
"locks": [],
"rejected_signals": 20,
"timedout_entry_orders": 0,
"timedout_exit_orders": 0,
"canceled_trade_entries": 0,
"canceled_entry_orders": 0,
"replaced_entry_orders": 0,
"final_balance": 1000,
},
]
)
mocker.patch(
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist",
PropertyMock(return_value=["XRP/USDT:USDT"]),
)
mocker.patch("freqtrade.optimize.backtesting.Backtesting.backtest", backtestmock)
2022-01-22 10:37:28 +00:00
patched_configuration_load_config_file(mocker, default_conf_usdt)
args = [
2024-05-12 14:15:27 +00:00
"backtesting",
"--config",
"config.json",
"--datadir",
str(testdatadir),
"--strategy-path",
str(Path(__file__).parents[1] / "strategy/strats"),
"--timeframe",
"1h",
2022-01-22 10:37:28 +00:00
]
args = get_args(args)
start_backtesting(args)
# check the logs, that will contain the backtest result
exists = [
2024-05-12 14:15:27 +00:00
"Parameter -i/--timeframe detected ... Using timeframe: 1h ...",
f"Using data directory: {testdatadir} ...",
2024-05-12 15:51:21 +00:00
"Loading data from 2021-11-17 01:00:00 up to 2021-11-21 04:00:00 (4 days).",
"Backtesting with data from 2021-11-17 21:00:00 up to 2021-11-21 04:00:00 (3 days).",
2024-05-12 14:15:27 +00:00
"XRP/USDT:USDT, funding_rate, 8h, data starts at 2021-11-18 00:00:00",
"XRP/USDT:USDT, mark, 8h, data starts at 2021-11-18 00:00:00",
f"Running backtesting for Strategy {CURRENT_TEST_STRATEGY}",
2022-01-22 10:37:28 +00:00
]
for line in exists:
assert log_has(line, caplog)
captured = capsys.readouterr()
2024-05-12 14:15:27 +00:00
assert "BACKTESTING REPORT" in captured.out
assert "EXIT REASON STATS" in captured.out
assert "LEFT OPEN TRADES REPORT" in captured.out
2022-01-22 10:37:28 +00:00
2021-08-14 14:56:49 +00:00
@pytest.mark.filterwarnings("ignore:deprecated")
2024-05-12 14:15:27 +00:00
def test_backtest_start_multi_strat_nomock_detail(
default_conf, mocker, caplog, testdatadir, capsys
):
2021-08-14 14:56:49 +00:00
# Tests detail-data loading
2024-05-12 14:15:27 +00:00
default_conf.update(
{
"use_exit_signal": True,
"exit_profit_only": False,
"exit_profit_offset": 0.0,
"ignore_roi_if_entry_signal": False,
}
)
2021-08-14 14:56:49 +00:00
patch_exchange(mocker)
2024-05-12 14:15:27 +00:00
result1 = pd.DataFrame(
2021-08-14 14:56:49 +00:00
{
2024-05-12 14:15:27 +00:00
"pair": ["XRP/BTC", "LTC/BTC"],
"profit_ratio": [0.0, 0.0],
"profit_abs": [0.0, 0.0],
"open_date": pd.to_datetime(
[
"2018-01-29 18:40:00",
"2018-01-30 03:30:00",
],
utc=True,
),
"close_date": pd.to_datetime(
[
"2018-01-29 20:45:00",
"2018-01-30 05:35:00",
],
utc=True,
),
"trade_duration": [235, 40],
"is_open": [False, False],
"is_short": [False, False],
"stake_amount": [0.01, 0.01],
"open_rate": [0.104445, 0.10302485],
"close_rate": [0.104969, 0.103541],
"exit_reason": [ExitType.ROI, ExitType.ROI],
}
)
result2 = pd.DataFrame(
2021-08-14 14:56:49 +00:00
{
2024-05-12 14:15:27 +00:00
"pair": ["XRP/BTC", "LTC/BTC", "ETH/BTC"],
"profit_ratio": [0.03, 0.01, 0.1],
"profit_abs": [0.01, 0.02, 0.2],
"open_date": pd.to_datetime(
["2018-01-29 18:40:00", "2018-01-30 03:30:00", "2018-01-30 05:30:00"], utc=True
),
"close_date": pd.to_datetime(
["2018-01-29 20:45:00", "2018-01-30 05:35:00", "2018-01-30 08:30:00"], utc=True
),
"trade_duration": [47, 40, 20],
"is_open": [False, False, False],
"is_short": [False, False, False],
"stake_amount": [0.01, 0.01, 0.01],
"open_rate": [0.104445, 0.10302485, 0.122541],
"close_rate": [0.104969, 0.103541, 0.123541],
"exit_reason": [ExitType.ROI, ExitType.ROI, ExitType.STOP_LOSS],
2021-08-14 14:56:49 +00:00
}
2024-05-12 14:15:27 +00:00
)
backtestmock = MagicMock(
side_effect=[
{
"results": result1,
"config": default_conf,
"locks": [],
"rejected_signals": 20,
"timedout_entry_orders": 0,
"timedout_exit_orders": 0,
"canceled_trade_entries": 0,
"canceled_entry_orders": 0,
"replaced_entry_orders": 0,
"final_balance": 1000,
},
{
"results": result2,
"config": default_conf,
"locks": [],
"rejected_signals": 20,
"timedout_entry_orders": 0,
"timedout_exit_orders": 0,
"canceled_trade_entries": 0,
"canceled_entry_orders": 0,
"replaced_entry_orders": 0,
"final_balance": 1000,
},
]
)
mocker.patch(
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist",
PropertyMock(return_value=["XRP/ETH"]),
)
mocker.patch("freqtrade.optimize.backtesting.Backtesting.backtest", backtestmock)
2021-08-14 14:56:49 +00:00
patched_configuration_load_config_file(mocker, default_conf)
args = [
2024-05-12 14:15:27 +00:00
"backtesting",
"--config",
"config.json",
"--datadir",
str(testdatadir),
"--strategy-path",
str(Path(__file__).parents[1] / "strategy/strats"),
"--timeframe",
"5m",
"--timeframe-detail",
"1m",
"--strategy-list",
CURRENT_TEST_STRATEGY,
]
2021-08-14 14:56:49 +00:00
args = get_args(args)
start_backtesting(args)
# check the logs, that will contain the backtest result
exists = [
2024-05-12 14:15:27 +00:00
"Parameter -i/--timeframe detected ... Using timeframe: 5m ...",
"Parameter --timeframe-detail detected, using 1m for intra-candle backtesting ...",
f"Using data directory: {testdatadir} ...",
2024-05-12 15:51:21 +00:00
"Loading data from 2019-10-11 00:00:00 up to 2019-10-13 11:15:00 (2 days).",
"Backtesting with data from 2019-10-11 01:40:00 up to 2019-10-13 11:15:00 (2 days).",
2024-05-12 14:15:27 +00:00
f"Running backtesting for Strategy {CURRENT_TEST_STRATEGY}",
2021-08-14 14:56:49 +00:00
]
for line in exists:
assert log_has(line, caplog)
captured = capsys.readouterr()
2024-05-12 14:15:27 +00:00
assert "BACKTESTING REPORT" in captured.out
assert "EXIT REASON STATS" in captured.out
assert "LEFT OPEN TRADES REPORT" in captured.out
@pytest.mark.filterwarnings("ignore:deprecated")
2024-05-12 14:15:27 +00:00
@pytest.mark.parametrize("run_id", ["2", "changed"])
@pytest.mark.parametrize("start_delta", [{"days": 0}, {"days": 1}, {"weeks": 1}, {"weeks": 4}])
@pytest.mark.parametrize("cache", constants.BACKTEST_CACHE_AGE)
def test_backtest_start_multi_strat_caching(
default_conf, mocker, caplog, testdatadir, run_id, start_delta, cache
):
default_conf.update(
{
"use_exit_signal": True,
"exit_profit_only": False,
"exit_profit_offset": 0.0,
"ignore_roi_if_entry_signal": False,
}
)
patch_exchange(mocker)
2024-05-12 14:15:27 +00:00
backtestmock = MagicMock(
return_value={
"results": pd.DataFrame(columns=BT_DATA_COLUMNS),
"config": default_conf,
"locks": [],
"rejected_signals": 20,
"timedout_entry_orders": 0,
"timedout_exit_orders": 0,
"canceled_trade_entries": 0,
"canceled_entry_orders": 0,
"replaced_entry_orders": 0,
"final_balance": 1000,
}
)
mocker.patch(
"freqtrade.plugins.pairlistmanager.PairListManager.whitelist",
PropertyMock(return_value=["UNITTEST/BTC"]),
)
mocker.patch("freqtrade.optimize.backtesting.Backtesting.backtest", backtestmock)
mocker.patch("freqtrade.optimize.backtesting.show_backtest_results", MagicMock())
now = min_backtest_date = datetime.now(tz=timezone.utc)
start_time = now - timedelta(**start_delta) + timedelta(hours=1)
2024-05-12 14:15:27 +00:00
if cache == "none":
min_backtest_date = now + timedelta(days=1)
2024-05-12 14:15:27 +00:00
elif cache == "day":
min_backtest_date = now - timedelta(days=1)
2024-05-12 14:15:27 +00:00
elif cache == "week":
min_backtest_date = now - timedelta(weeks=1)
2024-05-12 14:15:27 +00:00
elif cache == "month":
min_backtest_date = now - timedelta(weeks=4)
2024-05-12 14:15:27 +00:00
load_backtest_metadata = MagicMock(
return_value={
"StrategyTestV2": {"run_id": "1", "backtest_start_time": now.timestamp()},
"StrategyTestV3": {"run_id": run_id, "backtest_start_time": start_time.timestamp()},
}
2024-05-12 14:15:27 +00:00
)
load_backtest_stats = MagicMock(
side_effect=[
{
"metadata": {"StrategyTestV2": {"run_id": "1"}},
"strategy": {"StrategyTestV2": {}},
"strategy_comparison": [{"key": "StrategyTestV2"}],
},
{
"metadata": {"StrategyTestV3": {"run_id": "2"}},
"strategy": {"StrategyTestV3": {}},
"strategy_comparison": [{"key": "StrategyTestV3"}],
},
]
)
mocker.patch(
"pathlib.Path.glob",
return_value=[
Path(datetime.strftime(datetime.now(), "backtest-result-%Y-%m-%d_%H-%M-%S.json"))
],
)
mocker.patch.multiple(
"freqtrade.data.btanalysis",
load_backtest_metadata=load_backtest_metadata,
load_backtest_stats=load_backtest_stats,
)
mocker.patch("freqtrade.optimize.backtesting.get_strategy_run_id", side_effect=["1", "2", "2"])
patched_configuration_load_config_file(mocker, default_conf)
args = [
2024-05-12 14:15:27 +00:00
"backtesting",
"--config",
"config.json",
"--datadir",
str(testdatadir),
"--strategy-path",
str(Path(__file__).parents[1] / "strategy/strats"),
"--timeframe",
"1m",
"--timerange",
"1510694220-1510700340",
"--enable-position-stacking",
"--disable-max-market-positions",
"--cache",
cache,
"--strategy-list",
"StrategyTestV2",
"StrategyTestV3",
]
args = get_args(args)
start_backtesting(args)
# check the logs, that will contain the backtest result
exists = [
2024-05-12 14:15:27 +00:00
"Parameter -i/--timeframe detected ... Using timeframe: 1m ...",
"Parameter --timerange detected: 1510694220-1510700340 ...",
f"Using data directory: {testdatadir} ...",
"Loading data from 2017-11-14 20:57:00 " "up to 2017-11-14 22:59:00 (0 days).",
"Parameter --enable-position-stacking detected ...",
]
for line in exists:
assert log_has(line, caplog)
2024-05-12 14:15:27 +00:00
if cache == "none":
assert backtestmock.call_count == 2
exists = [
2024-05-12 14:15:27 +00:00
"Running backtesting for Strategy StrategyTestV2",
"Running backtesting for Strategy StrategyTestV3",
"Ignoring max_open_trades (--disable-max-market-positions was used) ...",
"Backtesting with data from 2017-11-14 21:17:00 up to 2017-11-14 22:59:00 (0 days).",
]
2024-05-12 14:15:27 +00:00
elif run_id == "2" and min_backtest_date < start_time:
assert backtestmock.call_count == 0
exists = [
2024-05-12 14:15:27 +00:00
"Reusing result of previous backtest for StrategyTestV2",
"Reusing result of previous backtest for StrategyTestV3",
]
else:
exists = [
2024-05-12 14:15:27 +00:00
"Reusing result of previous backtest for StrategyTestV2",
"Running backtesting for Strategy StrategyTestV3",
"Ignoring max_open_trades (--disable-max-market-positions was used) ...",
"Backtesting with data from 2017-11-14 21:17:00 up to 2017-11-14 22:59:00 (0 days).",
]
assert backtestmock.call_count == 1
for line in exists:
assert log_has(line, caplog)
def test_get_strategy_run_id(default_conf_usdt):
2024-05-12 14:15:27 +00:00
default_conf_usdt.update({"strategy": "StrategyTestV2", "max_open_trades": float("inf")})
strategy = StrategyResolver.load_strategy(default_conf_usdt)
x = get_strategy_run_id(strategy)
assert isinstance(x, str)
def test_get_backtest_metadata_filename():
# Test with a file path
2024-05-12 14:15:27 +00:00
filename = Path("backtest_results.json")
expected = Path("backtest_results.meta.json")
assert get_backtest_metadata_filename(filename) == expected
# Test with a file path with multiple dots in the name
2024-05-12 14:15:27 +00:00
filename = Path("/path/to/backtest.results.json")
expected = Path("/path/to/backtest.results.meta.json")
assert get_backtest_metadata_filename(filename) == expected
# Test with a file path with no parent directory
2024-05-12 14:15:27 +00:00
filename = Path("backtest_results.json")
expected = Path("backtest_results.meta.json")
assert get_backtest_metadata_filename(filename) == expected
# Test with a string file path
2024-05-12 14:15:27 +00:00
filename = "/path/to/backtest_results.json"
expected = Path("/path/to/backtest_results.meta.json")
assert get_backtest_metadata_filename(filename) == expected
# Test with a string file path with no extension
2024-05-12 14:15:27 +00:00
filename = "/path/to/backtest_results"
expected = Path("/path/to/backtest_results.meta")
assert get_backtest_metadata_filename(filename) == expected
# Test with a string file path with multiple dots in the name
2024-05-12 14:15:27 +00:00
filename = "/path/to/backtest.results.json"
expected = Path("/path/to/backtest.results.meta.json")
assert get_backtest_metadata_filename(filename) == expected
# Test with a string file path with no parent directory
2024-05-12 14:15:27 +00:00
filename = "backtest_results.json"
expected = Path("backtest_results.meta.json")
assert get_backtest_metadata_filename(filename) == expected