freqtrade_origin/freqtrade/freqai/base_models/BaseTensorFlowModel.py

150 lines
4.7 KiB
Python
Raw Normal View History

2022-07-12 17:10:09 +00:00
import logging
2022-09-23 08:18:34 +00:00
from time import time
2022-07-26 14:01:54 +00:00
from typing import Any
2022-07-12 17:10:09 +00:00
import numpy as np
2022-12-05 20:03:05 +00:00
import tensorflow as tf
from pandas import DataFrame
2022-07-12 17:10:09 +00:00
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.freqai_interface import IFreqaiModel
2022-12-05 20:03:05 +00:00
2022-07-12 17:10:09 +00:00
logger = logging.getLogger(__name__)
class BaseTensorFlowModel(IFreqaiModel):
"""
Base class for TensorFlow type models.
User *must* inherit from this class and set fit() and predict().
"""
def __init__(self, **kwargs):
super().__init__(config=kwargs['config'])
self.keras = True
if self.ft_params.get("DI_threshold", 0):
self.ft_params["DI_threshold"] = 0
logger.warning("DI threshold is not configured for Keras models yet. Deactivating.")
2022-12-05 19:55:05 +00:00
self.dd.model_type = 'keras'
2022-07-12 17:10:09 +00:00
def train(
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
2022-07-26 14:01:54 +00:00
) -> Any:
2022-07-12 17:10:09 +00:00
"""
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
for storing, saving, loading, and analyzing the data.
:param unfiltered_df: Full dataframe for the current training period
2022-07-24 14:54:39 +00:00
:param metadata: pair metadata from strategy.
:return:
2022-07-12 17:10:09 +00:00
:model: Trained model which can be used to inference (self.predict)
"""
2022-09-23 08:18:34 +00:00
logger.info(f"-------------------- Starting training {pair} --------------------")
start_time = time()
2022-07-12 17:10:09 +00:00
# filter the features requested by user in the configuration file and elegantly handle NaNs
features_filtered, labels_filtered = dk.filter_features(
unfiltered_df,
2022-07-12 17:10:09 +00:00
dk.training_features_list,
dk.label_list,
training_filter=True,
)
# split data into train/test data.
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
if not self.freqai_info.get("fit_live_predictions", 0) or not self.live:
dk.fit_labels()
2022-07-12 17:10:09 +00:00
# normalize all data based on train_dataset only
data_dictionary = dk.normalize_data(data_dictionary)
# optional additional data cleaning/analysis
self.data_cleaning_train(dk)
logger.info(
2022-09-23 08:18:34 +00:00
f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
2022-07-12 17:10:09 +00:00
)
2022-09-23 08:18:34 +00:00
logger.info(f"Training model on {len(data_dictionary['train_features'])} data points")
2022-07-12 17:10:09 +00:00
model = self.fit(data_dictionary, dk)
2022-07-12 17:10:09 +00:00
2022-09-23 08:18:34 +00:00
end_time = time()
logger.info(f"-------------------- Done training {pair} "
f"({end_time - start_time:.2f} secs) --------------------")
2022-07-12 17:10:09 +00:00
return model
class WindowGenerator:
def __init__(
self,
input_width,
label_width,
shift,
train_df=None,
val_df=None,
test_df=None,
train_labels=None,
val_labels=None,
test_labels=None,
batch_size=None,
):
# Store the raw data.
self.train_df = train_df
self.val_df = val_df
self.test_df = test_df
self.train_labels = train_labels
self.val_labels = val_labels
self.test_labels = test_labels
self.batch_size = batch_size
self.input_width = input_width
self.label_width = label_width
self.shift = shift
self.total_window_size = input_width + shift
self.input_slice = slice(0, input_width)
self.input_indices = np.arange(self.total_window_size)[self.input_slice]
def make_dataset(self, data, labels=None):
data = np.array(data, dtype=np.float32)
if labels is not None:
labels = np.array(labels, dtype=np.float32)
ds = tf.keras.preprocessing.timeseries_dataset_from_array(
data=data,
targets=labels,
sequence_length=self.total_window_size,
sequence_stride=1,
sampling_rate=1,
shuffle=False,
batch_size=self.batch_size,
)
return ds
@property
def train(self):
return self.make_dataset(self.train_df, self.train_labels)
@property
def val(self):
return self.make_dataset(self.val_df, self.val_labels)
@property
def test(self):
return self.make_dataset(self.test_df, self.test_labels)
@property
def inference(self):
return self.make_dataset(self.test_df)
@property
def example(self):
"""Get and cache an example batch of `inputs, labels` for plotting."""
result = getattr(self, "_example", None)
if result is None:
# No example batch was found, so get one from the `.train` dataset
result = next(iter(self.train))
# And cache it for next time
self._example = result
return result