freqtrade_origin/freqtrade/freqai/base_models/PyTorchModelTrainer.py

190 lines
6.9 KiB
Python
Raw Normal View History

import logging
from pathlib import Path
from typing import Any, Dict
2023-03-08 14:03:36 +00:00
import pandas as pd
import torch
import torch.nn as nn
2023-03-08 14:03:36 +00:00
from torch.optim import Optimizer
from torch.utils.data import DataLoader, TensorDataset
logger = logging.getLogger(__name__)
class PyTorchModelTrainer:
def __init__(
self,
model: nn.Module,
2023-03-06 18:15:36 +00:00
optimizer: Optimizer,
criterion: nn.Module,
device: str,
batch_size: int,
max_iters: int,
eval_iters: int,
init_model: Dict,
model_meta_data: Dict[str, Any] = {},
):
2023-03-09 09:14:54 +00:00
"""
A class for training PyTorch models.
2023-03-09 10:45:46 +00:00
Implements the training loop logic, load/save methods.
fit method - training loop logic:
- Calculates the predicted output for the batch using the PyTorch model.
- Calculates the loss between the predicted and actual output using a loss function.
- Computes the gradients of the loss with respect to the model's parameters using
backpropagation.
- Updates the model's parameters using an optimizer.
save method:
called by DataDrawer
- Saving any nn.Module state_dict
- Saving model_meta_data, this dict should contain any additional data that the
user needs to store. e.g class_names for classification models.
load method:
currently DataDrawer is responsible for the actual loading.
when using continual_learning the DataDrawer will load the dict
(saved by self.save(path)). and this class will populate the necessary
state_dict of the self.model & self.optimizer and self.model_meta_data.
2023-03-09 09:14:54 +00:00
:param model: The PyTorch model to be trained.
:param optimizer: The optimizer to use for training.
:param criterion: The loss function to use for training.
:param device: The device to use for training (e.g. 'cpu', 'cuda').
:param batch_size: The size of the batches to use during training.
:param max_iters: The number of training iterations to run.
2023-03-09 10:45:46 +00:00
iteration here refers to the number of times we call self.optimizer.step().
used to calculate n_epochs.
2023-03-09 09:14:54 +00:00
:param eval_iters: The number of iterations used to estimate the loss.
2023-03-09 10:45:46 +00:00
:param init_model: A dictionary containing the initial model/optimizer
state_dict and model_meta_data saved by self.save() method.
2023-03-09 09:14:54 +00:00
:param model_meta_data: Additional metadata about the model (optional).
"""
self.model = model
self.optimizer = optimizer
self.criterion = criterion
self.model_meta_data = model_meta_data
self.device = device
self.max_iters = max_iters
self.batch_size = batch_size
self.eval_iters = eval_iters
if init_model:
self.load_from_checkpoint(init_model)
def fit(self, data_dictionary: Dict[str, pd.DataFrame]):
2023-03-09 09:14:54 +00:00
"""
2023-03-09 09:21:10 +00:00
General training loop.
2023-03-09 09:14:54 +00:00
"""
data_loaders_dictionary = self.create_data_loaders_dictionary(data_dictionary)
epochs = self.calc_n_epochs(
n_obs=len(data_dictionary['train_features']),
batch_size=self.batch_size,
n_iters=self.max_iters
)
for epoch in range(epochs):
# evaluation
losses = self.estimate_loss(data_loaders_dictionary, data_dictionary)
logger.info(
f"epoch ({epoch}/{epochs}):"
f" train loss {losses['train']:.4f} ; test loss {losses['test']:.4f}"
)
# training
for batch_data in data_loaders_dictionary['train']:
xb, yb = batch_data
2023-03-06 17:14:54 +00:00
xb = xb.to(self.device)
yb = yb.to(self.device)
yb_pred = self.model(xb)
loss = self.criterion(yb_pred, yb)
self.optimizer.zero_grad(set_to_none=True)
loss.backward()
self.optimizer.step()
@torch.no_grad()
def estimate_loss(
self,
data_loader_dictionary: Dict[str, DataLoader],
data_dictionary: Dict[str, pd.DataFrame]
) -> Dict[str, float]:
self.model.eval()
epochs = self.calc_n_epochs(
2023-03-06 15:50:02 +00:00
n_obs=len(data_dictionary['test_features']),
batch_size=self.batch_size,
n_iters=self.eval_iters
)
loss_dictionary = {}
for split in ['train', 'test']:
losses = torch.zeros(epochs)
for i, batch in enumerate(data_loader_dictionary[split]):
xb, yb = batch
xb = xb.to(self.device)
yb = yb.to(self.device)
yb_pred = self.model(xb)
loss = self.criterion(yb_pred, yb)
losses[i] = loss.item()
2023-03-06 17:37:08 +00:00
loss_dictionary[split] = losses.mean().item()
self.model.train()
return loss_dictionary
def create_data_loaders_dictionary(
self,
data_dictionary: Dict[str, pd.DataFrame]
) -> Dict[str, DataLoader]:
2023-03-09 09:21:10 +00:00
"""
Converts the input data to PyTorch tensors using a data loader.
"""
data_loader_dictionary = {}
for split in ['train', 'test']:
labels_shape = data_dictionary[f'{split}_labels'].shape
labels_view = labels_shape[0] if labels_shape[1] == 1 else labels_shape
dataset = TensorDataset(
torch.from_numpy(data_dictionary[f'{split}_features'].values).float(),
torch.from_numpy(data_dictionary[f'{split}_labels'].astype(float).values)
.long()
2023-03-06 15:50:02 +00:00
.view(labels_view)
)
2023-03-06 15:50:02 +00:00
data_loader = DataLoader(
dataset,
batch_size=self.batch_size,
shuffle=True,
drop_last=True,
num_workers=0,
)
data_loader_dictionary[split] = data_loader
return data_loader_dictionary
@staticmethod
def calc_n_epochs(n_obs: int, batch_size: int, n_iters: int) -> int:
2023-03-09 09:21:10 +00:00
"""
Calculates the number of epochs required to reach the maximum number
of iterations specified in the model training parameters.
"""
n_batches = n_obs // batch_size
epochs = n_iters // n_batches
return epochs
def save(self, path: Path):
torch.save({
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'model_meta_data': self.model_meta_data,
}, path)
def load_from_file(self, path: Path):
checkpoint = torch.load(path)
return self.load_from_checkpoint(checkpoint)
def load_from_checkpoint(self, checkpoint: Dict):
self.model.load_state_dict(checkpoint['model_state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
self.model_meta_data = checkpoint["model_meta_data"]
return self