freqtrade_origin/freqtrade/rpc/api_server/api_models.py

210 lines
3.7 KiB
Python
Raw Normal View History

2020-12-27 08:02:35 +00:00
from datetime import date, datetime
2020-12-26 19:05:27 +00:00
from typing import Any, Dict, List, Optional, Union
2020-12-27 08:02:35 +00:00
from pydantic import BaseModel
2020-12-27 08:02:35 +00:00
from freqtrade.constants import DATETIME_PRINT_FORMAT
class Ping(BaseModel):
status: str
2020-12-25 12:11:01 +00:00
2020-12-25 14:50:19 +00:00
class AccessToken(BaseModel):
access_token: str
class AccessAndRefreshToken(AccessToken):
refresh_token: str
2020-12-25 12:11:01 +00:00
class Version(BaseModel):
version: str
2020-12-25 19:07:12 +00:00
class StatusMsg(BaseModel):
status: str
2020-12-26 16:33:27 +00:00
class ResultMsg(BaseModel):
result: str
class Balance(BaseModel):
currency: str
free: float
balance: float
used: float
est_stake: float
stake: str
class Balances(BaseModel):
currencies: List[Balance]
total: float
symbol: str
value: float
stake: str
note: str
2020-12-26 14:54:22 +00:00
class Count(BaseModel):
current: int
max: int
total_stake: float
2020-12-26 15:43:15 +00:00
class PerformanceEntry(BaseModel):
pair: str
profit: float
count: int
class Profit(BaseModel):
profit_closed_coin: float
profit_closed_percent: float
profit_closed_percent_mean: float
profit_closed_ratio_mean: float
profit_closed_percent_sum: float
profit_closed_ratio_sum: float
profit_closed_fiat: float
profit_all_coin: float
profit_all_percent: float
profit_all_percent_mean: float
profit_all_ratio_mean: float
profit_all_percent_sum: float
profit_all_ratio_sum: float
profit_all_fiat: float
trade_count: int
closed_trade_count: int
first_trade_date: str
first_trade_timestamp: int
latest_trade_date: str
latest_trade_timestamp: int
avg_duration: str
best_pair: str
best_rate: float
winning_trades: int
losing_trades: int
class SellReason(BaseModel):
wins: int
losses: int
draws: int
class Stats(BaseModel):
sell_reasons: Dict[str, SellReason]
durations: Dict[str, Union[str, float]]
2020-12-26 16:33:27 +00:00
class DailyRecord(BaseModel):
date: date
abs_profit: float
fiat_value: float
trade_count: int
class Daily(BaseModel):
data: List[DailyRecord]
fiat_display_currency: str
stake_currency: str
class LockModel(BaseModel):
active: bool
lock_end_time: str
lock_end_timestamp: int
lock_time: str
lock_timestamp: int
pair: str
reason: str
class Locks(BaseModel):
lock_count: int
locks: List[LockModel]
class Logs(BaseModel):
log_count: int
logs: List[List]
class ForceBuyPayload(BaseModel):
pair: str
price: Optional[float]
class ForceSellPayload(BaseModel):
tradeid: str
2020-12-26 16:33:27 +00:00
class BlacklistPayload(BaseModel):
blacklist: List[str]
class BlacklistResponse(BaseModel):
blacklist: List[str]
blacklist_expanded: List[str]
errors: Dict
length: int
method: List[str]
class WhitelistResponse(BaseModel):
whitelist: List[str]
length: int
method: List[str]
class DeleteTrade(BaseModel):
cancel_order_count: int
result: str
result_msg: str
trade_id: int
2020-12-26 19:05:27 +00:00
class PlotConfig(BaseModel):
2020-12-31 10:01:50 +00:00
main_plot: Dict[str, Any]
2020-12-26 19:05:27 +00:00
subplots: Optional[Dict[str, Any]]
class StrategyListResponse(BaseModel):
strategies: List[str]
class StrategyResponse(BaseModel):
strategy: str
code: str
class AvailablePairs(BaseModel):
length: int
pairs: List[str]
pair_interval: List[List[str]]
2020-12-27 08:02:35 +00:00
class PairHistory(BaseModel):
strategy: str
pair: str
timeframe: str
timeframe_ms: int
columns: List[str]
data: List[Any]
length: int
buy_signals: int
sell_signals: int
last_analyzed: datetime
last_analyzed_ts: int
data_start_ts: int
data_start: str
data_stop: str
data_stop_ts: int
class Config:
json_encoders = {
datetime: lambda v: v.strftime(DATETIME_PRINT_FORMAT),
}