2022-07-12 17:10:09 +00:00
|
|
|
import logging
|
2022-09-23 08:18:34 +00:00
|
|
|
from time import time
|
2022-07-26 14:01:54 +00:00
|
|
|
from typing import Any
|
2022-07-12 17:10:09 +00:00
|
|
|
|
|
|
|
from pandas import DataFrame
|
2022-11-27 16:42:03 +00:00
|
|
|
import numpy as np
|
2022-07-12 17:10:09 +00:00
|
|
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
|
|
|
from freqtrade.freqai.freqai_interface import IFreqaiModel
|
2022-11-27 16:42:03 +00:00
|
|
|
import tensorflow as tf
|
2022-07-12 17:10:09 +00:00
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
class BaseTensorFlowModel(IFreqaiModel):
|
|
|
|
"""
|
|
|
|
Base class for TensorFlow type models.
|
|
|
|
User *must* inherit from this class and set fit() and predict().
|
|
|
|
"""
|
|
|
|
|
2022-11-27 16:42:03 +00:00
|
|
|
def __init__(self, **kwargs):
|
|
|
|
super().__init__(config=kwargs['config'])
|
|
|
|
self.keras = True
|
|
|
|
if self.ft_params.get("DI_threshold", 0):
|
|
|
|
self.ft_params["DI_threshold"] = 0
|
|
|
|
logger.warning("DI threshold is not configured for Keras models yet. Deactivating.")
|
2022-12-05 19:55:05 +00:00
|
|
|
self.dd.model_type = 'keras'
|
2022-11-27 16:42:03 +00:00
|
|
|
|
2022-07-12 17:10:09 +00:00
|
|
|
def train(
|
2022-09-09 17:17:15 +00:00
|
|
|
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
|
2022-07-26 14:01:54 +00:00
|
|
|
) -> Any:
|
2022-07-12 17:10:09 +00:00
|
|
|
"""
|
|
|
|
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
|
|
|
|
for storing, saving, loading, and analyzing the data.
|
2022-09-09 17:17:15 +00:00
|
|
|
:param unfiltered_df: Full dataframe for the current training period
|
2022-07-24 14:54:39 +00:00
|
|
|
:param metadata: pair metadata from strategy.
|
2022-08-14 00:49:01 +00:00
|
|
|
:return:
|
2022-07-12 17:10:09 +00:00
|
|
|
:model: Trained model which can be used to inference (self.predict)
|
|
|
|
"""
|
|
|
|
|
2022-09-23 08:18:34 +00:00
|
|
|
logger.info(f"-------------------- Starting training {pair} --------------------")
|
|
|
|
|
|
|
|
start_time = time()
|
2022-07-12 17:10:09 +00:00
|
|
|
|
|
|
|
# filter the features requested by user in the configuration file and elegantly handle NaNs
|
|
|
|
features_filtered, labels_filtered = dk.filter_features(
|
2022-09-09 17:17:15 +00:00
|
|
|
unfiltered_df,
|
2022-07-12 17:10:09 +00:00
|
|
|
dk.training_features_list,
|
|
|
|
dk.label_list,
|
|
|
|
training_filter=True,
|
|
|
|
)
|
|
|
|
|
|
|
|
# split data into train/test data.
|
|
|
|
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
|
2022-11-27 16:42:03 +00:00
|
|
|
if not self.freqai_info.get("fit_live_predictions", 0) or not self.live:
|
2022-08-14 00:49:01 +00:00
|
|
|
dk.fit_labels()
|
2022-07-12 17:10:09 +00:00
|
|
|
# normalize all data based on train_dataset only
|
|
|
|
data_dictionary = dk.normalize_data(data_dictionary)
|
|
|
|
|
|
|
|
# optional additional data cleaning/analysis
|
|
|
|
self.data_cleaning_train(dk)
|
|
|
|
|
|
|
|
logger.info(
|
2022-09-23 08:18:34 +00:00
|
|
|
f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
|
2022-07-12 17:10:09 +00:00
|
|
|
)
|
2022-09-23 08:18:34 +00:00
|
|
|
logger.info(f"Training model on {len(data_dictionary['train_features'])} data points")
|
2022-07-12 17:10:09 +00:00
|
|
|
|
2022-09-06 18:30:37 +00:00
|
|
|
model = self.fit(data_dictionary, dk)
|
2022-07-12 17:10:09 +00:00
|
|
|
|
2022-09-23 08:18:34 +00:00
|
|
|
end_time = time()
|
|
|
|
|
|
|
|
logger.info(f"-------------------- Done training {pair} "
|
|
|
|
f"({end_time - start_time:.2f} secs) --------------------")
|
2022-07-12 17:10:09 +00:00
|
|
|
|
|
|
|
return model
|
2022-11-27 16:42:03 +00:00
|
|
|
|
|
|
|
|
|
|
|
class WindowGenerator:
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
input_width,
|
|
|
|
label_width,
|
|
|
|
shift,
|
|
|
|
train_df=None,
|
|
|
|
val_df=None,
|
|
|
|
test_df=None,
|
|
|
|
train_labels=None,
|
|
|
|
val_labels=None,
|
|
|
|
test_labels=None,
|
|
|
|
batch_size=None,
|
|
|
|
):
|
|
|
|
# Store the raw data.
|
|
|
|
self.train_df = train_df
|
|
|
|
self.val_df = val_df
|
|
|
|
self.test_df = test_df
|
|
|
|
self.train_labels = train_labels
|
|
|
|
self.val_labels = val_labels
|
|
|
|
self.test_labels = test_labels
|
|
|
|
self.batch_size = batch_size
|
|
|
|
self.input_width = input_width
|
|
|
|
self.label_width = label_width
|
|
|
|
self.shift = shift
|
|
|
|
self.total_window_size = input_width + shift
|
|
|
|
self.input_slice = slice(0, input_width)
|
|
|
|
self.input_indices = np.arange(self.total_window_size)[self.input_slice]
|
|
|
|
|
|
|
|
def make_dataset(self, data, labels=None):
|
|
|
|
data = np.array(data, dtype=np.float32)
|
|
|
|
if labels is not None:
|
|
|
|
labels = np.array(labels, dtype=np.float32)
|
|
|
|
ds = tf.keras.preprocessing.timeseries_dataset_from_array(
|
|
|
|
data=data,
|
|
|
|
targets=labels,
|
|
|
|
sequence_length=self.total_window_size,
|
|
|
|
sequence_stride=1,
|
|
|
|
sampling_rate=1,
|
|
|
|
shuffle=False,
|
|
|
|
batch_size=self.batch_size,
|
|
|
|
)
|
|
|
|
|
|
|
|
return ds
|
|
|
|
|
|
|
|
@property
|
|
|
|
def train(self):
|
|
|
|
return self.make_dataset(self.train_df, self.train_labels)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def val(self):
|
|
|
|
return self.make_dataset(self.val_df, self.val_labels)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def test(self):
|
|
|
|
return self.make_dataset(self.test_df, self.test_labels)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def inference(self):
|
|
|
|
return self.make_dataset(self.test_df)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def example(self):
|
|
|
|
"""Get and cache an example batch of `inputs, labels` for plotting."""
|
|
|
|
result = getattr(self, "_example", None)
|
|
|
|
if result is None:
|
|
|
|
# No example batch was found, so get one from the `.train` dataset
|
|
|
|
result = next(iter(self.train))
|
|
|
|
# And cache it for next time
|
|
|
|
self._example = result
|
|
|
|
return result
|