freqtrade_origin/freqtrade/freqai/prediction_models/PyTorchClassifierMultiTarget.py

132 lines
5.5 KiB
Python
Raw Normal View History

2023-03-05 14:59:24 +00:00
import logging
from typing import Any, Dict, Tuple, List
2023-03-05 14:59:24 +00:00
import numpy.typing as npt
import numpy as np
import pandas as pd
import torch
from pandas import DataFrame
from torch.nn import functional as F
from freqtrade.exceptions import OperationalException
2023-03-05 14:59:24 +00:00
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.base_models.BasePyTorchModel import BasePyTorchModel
from freqtrade.freqai.base_models.PyTorchModelTrainer import PyTorchModelTrainer
from freqtrade.freqai.prediction_models.PyTorchMLPModel import PyTorchMLPModel
2023-03-05 14:59:24 +00:00
logger = logging.getLogger(__name__)
class PyTorchClassifierMultiTarget(BasePyTorchModel):
2023-03-05 14:59:24 +00:00
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.multiclass_names = self.freqai_info["multiclass_target_names"]
if not self.multiclass_names:
raise OperationalException(
"Missing 'multiclass_names' in freqai_info,"
" multi class pytorch model requires predefined list of"
" class names matching the strategy being used"
)
self.class_name_to_index = {s: i for i, s in enumerate(self.multiclass_names)}
self.index_to_class_name = {i: s for i, s in enumerate(self.multiclass_names)}
model_training_parameters = self.freqai_info["model_training_parameters"]
self.n_hidden = model_training_parameters.get("n_hidden", 1024)
self.max_iters = model_training_parameters.get("max_iters", 100)
self.batch_size = model_training_parameters.get("batch_size", 64)
self.learning_rate = model_training_parameters.get("learning_rate", 3e-4)
self.eval_iters = model_training_parameters.get("eval_iters", 10)
2023-03-05 14:59:24 +00:00
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param tensor_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
"""
self.encode_classes_name(data_dictionary, dk)
n_features = data_dictionary['train_features'].shape[-1]
model = PyTorchMLPModel(
2023-03-05 14:59:24 +00:00
input_dim=n_features,
hidden_dim=self.n_hidden,
output_dim=len(self.multiclass_names)
2023-03-05 14:59:24 +00:00
)
model.to(self.device)
optimizer = torch.optim.AdamW(model.parameters(), lr=self.learning_rate)
criterion = torch.nn.CrossEntropyLoss()
2023-03-05 14:59:24 +00:00
init_model = self.get_init_model(dk.pair)
trainer = PyTorchModelTrainer(
model=model,
optimizer=optimizer,
criterion=criterion,
device=self.device,
batch_size=self.batch_size,
max_iters=self.max_iters,
eval_iters=self.eval_iters,
init_model=init_model
)
trainer.fit(data_dictionary)
2023-03-05 14:59:24 +00:00
return trainer
def predict(
self, unfiltered_df: DataFrame, dk: FreqaiDataKitchen, **kwargs
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
"""
Filter the prediction features data and predict with it.
:param unfiltered_df: Full dataframe for the current backtest period.
:return:
:pred_df: dataframe containing the predictions
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
data (NaNs) or felt uncertain about data (PCA and DI index)
"""
dk.find_features(unfiltered_df)
filtered_df, _ = dk.filter_features(
unfiltered_df, dk.training_features_list, training_filter=False
)
filtered_df = dk.normalize_data_from_metadata(filtered_df)
dk.data_dictionary["prediction_features"] = filtered_df
self.data_cleaning_predict(dk)
dk.data_dictionary["prediction_features"] = torch.tensor(
dk.data_dictionary["prediction_features"].values
).float().to(self.device)
2023-03-05 14:59:24 +00:00
logits = self.model.model(dk.data_dictionary["prediction_features"])
2023-03-05 14:59:24 +00:00
probs = F.softmax(logits, dim=-1)
predicted_classes = torch.argmax(probs, dim=-1)
predicted_classes_str = self.decode_classes_name(predicted_classes)
2023-03-05 14:59:24 +00:00
pred_df_prob = DataFrame(probs.detach().numpy(), columns=self.multiclass_names)
pred_df = DataFrame(predicted_classes_str, columns=[dk.label_list[0]])
2023-03-05 14:59:24 +00:00
pred_df = pd.concat([pred_df, pred_df_prob], axis=1)
return (pred_df, dk.do_predict)
def encode_classes_name(self, data_dictionary: Dict[str, pd.DataFrame], dk: FreqaiDataKitchen):
"""
encode class name str -> int
assuming first column of *_labels data frame to contain class names
"""
target_column_name = dk.label_list[0]
for split in ["train", "test"]:
label_df = data_dictionary[f"{split}_labels"]
self.assert_valid_class_names(label_df[target_column_name])
label_df[target_column_name] = list(
map(lambda x: self.class_name_to_index[x], label_df[target_column_name])
)
def assert_valid_class_names(self, labels: pd.Series):
non_defined_labels = set(labels) - set(self.multiclass_names)
if len(non_defined_labels) != 0:
raise OperationalException(
f"Found non defined labels {non_defined_labels} ",
f"expecting labels {self.multiclass_names}"
)
def decode_classes_name(self, classes: List[int]) -> List[str]:
return list(map(lambda x: self.index_to_class_name[x], classes))