2021-04-09 19:58:15 +00:00
|
|
|
import numpy as np
|
|
|
|
from skopt.space import Integer
|
|
|
|
|
|
|
|
|
|
|
|
class SKDecimal(Integer):
|
2024-05-12 15:20:36 +00:00
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
low,
|
|
|
|
high,
|
|
|
|
decimals=3,
|
|
|
|
prior="uniform",
|
|
|
|
base=10,
|
|
|
|
transform=None,
|
|
|
|
name=None,
|
|
|
|
dtype=np.int64,
|
|
|
|
):
|
2021-04-09 19:58:15 +00:00
|
|
|
self.decimals = decimals
|
Improve performance of decimalspace.py
decimalspace.py is heavily used in the hyperoptimization. The following
benchmark code runs an optimization which is taken from optimizing a
real strategy (wtc).
The optimized version takes on my machine approx. 11/12s compared to the
original 32s. Results are equivalent in both cases.
```
import freqtrade.optimize.space
import numpy as np
import skopt
import timeit
def init():
Decimal = freqtrade.optimize.space.decimalspace.SKDecimal
Integer = skopt.space.space.Integer
dimensions = [Decimal(low=-1.0,
high=1.0,
decimals=4,
prior='uniform',
transform='identity')] * 20
return skopt.Optimizer(
dimensions,
base_estimator="ET",
acq_optimizer="auto",
n_initial_points=5,
acq_optimizer_kwargs={'n_jobs': 96},
random_state=0,
model_queue_size=10,
)
def test():
opt = init()
actual = opt.ask(n_points=2)
expected = [[
0.7515, -0.4723, -0.6941, -0.7988, 0.0448, 0.8605, -0.108, 0.5399,
0.763, -0.2948, 0.8345, -0.7683, 0.7077, -0.2478, -0.333, 0.8575,
0.6108, 0.4514, 0.5982, 0.3506
], [
0.5563, 0.7386, -0.6407, 0.9073, -0.5211, -0.8167, -0.3771,
-0.0318, 0.2861, 0.1176, 0.0943, -0.6077, -0.9317, -0.5372,
-0.4934, -0.3637, -0.8035, -0.8627, -0.5399, 0.6036
]]
absdiff = np.max(np.abs(np.asarray(expected) - np.asarray(actual)))
assert absdiff < 1e-5
def time():
opt = init()
print('dt', timeit.timeit("opt.ask(n_points=20)", globals=locals()))
if __name__ == "__main__":
test()
time()
```
2021-10-23 07:20:00 +00:00
|
|
|
|
|
|
|
self.pow_dot_one = pow(0.1, self.decimals)
|
|
|
|
self.pow_ten = pow(10, self.decimals)
|
|
|
|
|
|
|
|
_low = int(low * self.pow_ten)
|
|
|
|
_high = int(high * self.pow_ten)
|
2021-04-15 19:38:20 +00:00
|
|
|
# trunc to precision to avoid points out of space
|
Improve performance of decimalspace.py
decimalspace.py is heavily used in the hyperoptimization. The following
benchmark code runs an optimization which is taken from optimizing a
real strategy (wtc).
The optimized version takes on my machine approx. 11/12s compared to the
original 32s. Results are equivalent in both cases.
```
import freqtrade.optimize.space
import numpy as np
import skopt
import timeit
def init():
Decimal = freqtrade.optimize.space.decimalspace.SKDecimal
Integer = skopt.space.space.Integer
dimensions = [Decimal(low=-1.0,
high=1.0,
decimals=4,
prior='uniform',
transform='identity')] * 20
return skopt.Optimizer(
dimensions,
base_estimator="ET",
acq_optimizer="auto",
n_initial_points=5,
acq_optimizer_kwargs={'n_jobs': 96},
random_state=0,
model_queue_size=10,
)
def test():
opt = init()
actual = opt.ask(n_points=2)
expected = [[
0.7515, -0.4723, -0.6941, -0.7988, 0.0448, 0.8605, -0.108, 0.5399,
0.763, -0.2948, 0.8345, -0.7683, 0.7077, -0.2478, -0.333, 0.8575,
0.6108, 0.4514, 0.5982, 0.3506
], [
0.5563, 0.7386, -0.6407, 0.9073, -0.5211, -0.8167, -0.3771,
-0.0318, 0.2861, 0.1176, 0.0943, -0.6077, -0.9317, -0.5372,
-0.4934, -0.3637, -0.8035, -0.8627, -0.5399, 0.6036
]]
absdiff = np.max(np.abs(np.asarray(expected) - np.asarray(actual)))
assert absdiff < 1e-5
def time():
opt = init()
print('dt', timeit.timeit("opt.ask(n_points=20)", globals=locals()))
if __name__ == "__main__":
test()
time()
```
2021-10-23 07:20:00 +00:00
|
|
|
self.low_orig = round(_low * self.pow_dot_one, self.decimals)
|
|
|
|
self.high_orig = round(_high * self.pow_dot_one, self.decimals)
|
2021-04-09 19:58:15 +00:00
|
|
|
|
|
|
|
super().__init__(_low, _high, prior, base, transform, name, dtype)
|
|
|
|
|
|
|
|
def __repr__(self):
|
2024-03-11 16:50:47 +00:00
|
|
|
return (
|
|
|
|
f"Decimal(low={self.low_orig}, high={self.high_orig}, decimals={self.decimals}, "
|
|
|
|
f"prior='{self.prior}', transform='{self.transform_}')"
|
|
|
|
)
|
2021-04-09 19:58:15 +00:00
|
|
|
|
|
|
|
def __contains__(self, point):
|
|
|
|
if isinstance(point, list):
|
|
|
|
point = np.array(point)
|
|
|
|
return self.low_orig <= point <= self.high_orig
|
|
|
|
|
|
|
|
def transform(self, Xt):
|
Improve performance of decimalspace.py
decimalspace.py is heavily used in the hyperoptimization. The following
benchmark code runs an optimization which is taken from optimizing a
real strategy (wtc).
The optimized version takes on my machine approx. 11/12s compared to the
original 32s. Results are equivalent in both cases.
```
import freqtrade.optimize.space
import numpy as np
import skopt
import timeit
def init():
Decimal = freqtrade.optimize.space.decimalspace.SKDecimal
Integer = skopt.space.space.Integer
dimensions = [Decimal(low=-1.0,
high=1.0,
decimals=4,
prior='uniform',
transform='identity')] * 20
return skopt.Optimizer(
dimensions,
base_estimator="ET",
acq_optimizer="auto",
n_initial_points=5,
acq_optimizer_kwargs={'n_jobs': 96},
random_state=0,
model_queue_size=10,
)
def test():
opt = init()
actual = opt.ask(n_points=2)
expected = [[
0.7515, -0.4723, -0.6941, -0.7988, 0.0448, 0.8605, -0.108, 0.5399,
0.763, -0.2948, 0.8345, -0.7683, 0.7077, -0.2478, -0.333, 0.8575,
0.6108, 0.4514, 0.5982, 0.3506
], [
0.5563, 0.7386, -0.6407, 0.9073, -0.5211, -0.8167, -0.3771,
-0.0318, 0.2861, 0.1176, 0.0943, -0.6077, -0.9317, -0.5372,
-0.4934, -0.3637, -0.8035, -0.8627, -0.5399, 0.6036
]]
absdiff = np.max(np.abs(np.asarray(expected) - np.asarray(actual)))
assert absdiff < 1e-5
def time():
opt = init()
print('dt', timeit.timeit("opt.ask(n_points=20)", globals=locals()))
if __name__ == "__main__":
test()
time()
```
2021-10-23 07:20:00 +00:00
|
|
|
return super().transform([int(v * self.pow_ten) for v in Xt])
|
2021-04-09 19:58:15 +00:00
|
|
|
|
|
|
|
def inverse_transform(self, Xt):
|
|
|
|
res = super().inverse_transform(Xt)
|
Improve performance of decimalspace.py
decimalspace.py is heavily used in the hyperoptimization. The following
benchmark code runs an optimization which is taken from optimizing a
real strategy (wtc).
The optimized version takes on my machine approx. 11/12s compared to the
original 32s. Results are equivalent in both cases.
```
import freqtrade.optimize.space
import numpy as np
import skopt
import timeit
def init():
Decimal = freqtrade.optimize.space.decimalspace.SKDecimal
Integer = skopt.space.space.Integer
dimensions = [Decimal(low=-1.0,
high=1.0,
decimals=4,
prior='uniform',
transform='identity')] * 20
return skopt.Optimizer(
dimensions,
base_estimator="ET",
acq_optimizer="auto",
n_initial_points=5,
acq_optimizer_kwargs={'n_jobs': 96},
random_state=0,
model_queue_size=10,
)
def test():
opt = init()
actual = opt.ask(n_points=2)
expected = [[
0.7515, -0.4723, -0.6941, -0.7988, 0.0448, 0.8605, -0.108, 0.5399,
0.763, -0.2948, 0.8345, -0.7683, 0.7077, -0.2478, -0.333, 0.8575,
0.6108, 0.4514, 0.5982, 0.3506
], [
0.5563, 0.7386, -0.6407, 0.9073, -0.5211, -0.8167, -0.3771,
-0.0318, 0.2861, 0.1176, 0.0943, -0.6077, -0.9317, -0.5372,
-0.4934, -0.3637, -0.8035, -0.8627, -0.5399, 0.6036
]]
absdiff = np.max(np.abs(np.asarray(expected) - np.asarray(actual)))
assert absdiff < 1e-5
def time():
opt = init()
print('dt', timeit.timeit("opt.ask(n_points=20)", globals=locals()))
if __name__ == "__main__":
test()
time()
```
2021-10-23 07:20:00 +00:00
|
|
|
# equivalent to [round(x * pow(0.1, self.decimals), self.decimals) for x in res]
|
|
|
|
return [int(v) / self.pow_ten for v in res]
|