mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 18:23:55 +00:00
315 lines
13 KiB
Python
315 lines
13 KiB
Python
|
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
|
||
|
|
||
|
import talib.abstract as ta
|
||
|
from pandas import DataFrame
|
||
|
from typing import Dict, Any, Callable
|
||
|
from functools import reduce
|
||
|
|
||
|
import numpy
|
||
|
from hyperopt import hp
|
||
|
|
||
|
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||
|
from freqtrade.optimize.interface import IHyperOpt
|
||
|
|
||
|
class_name = 'DefaultHyperOpts'
|
||
|
|
||
|
|
||
|
class DefaultHyperOpts(IHyperOpt):
|
||
|
"""
|
||
|
Default hyperopt provided by freqtrade bot.
|
||
|
You can override it with your own hyperopt
|
||
|
"""
|
||
|
|
||
|
@staticmethod
|
||
|
def populate_indicators(dataframe: DataFrame) -> DataFrame:
|
||
|
"""
|
||
|
Adds several different TA indicators to the given DataFrame
|
||
|
"""
|
||
|
dataframe['adx'] = ta.ADX(dataframe)
|
||
|
dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
|
||
|
dataframe['cci'] = ta.CCI(dataframe)
|
||
|
macd = ta.MACD(dataframe)
|
||
|
dataframe['macd'] = macd['macd']
|
||
|
dataframe['macdsignal'] = macd['macdsignal']
|
||
|
dataframe['macdhist'] = macd['macdhist']
|
||
|
dataframe['mfi'] = ta.MFI(dataframe)
|
||
|
dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
|
||
|
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
||
|
dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
|
||
|
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
|
||
|
dataframe['roc'] = ta.ROC(dataframe)
|
||
|
dataframe['rsi'] = ta.RSI(dataframe)
|
||
|
# Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
|
||
|
rsi = 0.1 * (dataframe['rsi'] - 50)
|
||
|
dataframe['fisher_rsi'] = (numpy.exp(2 * rsi) - 1) / (numpy.exp(2 * rsi) + 1)
|
||
|
# Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
|
||
|
dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
|
||
|
# Stoch
|
||
|
stoch = ta.STOCH(dataframe)
|
||
|
dataframe['slowd'] = stoch['slowd']
|
||
|
dataframe['slowk'] = stoch['slowk']
|
||
|
# Stoch fast
|
||
|
stoch_fast = ta.STOCHF(dataframe)
|
||
|
dataframe['fastd'] = stoch_fast['fastd']
|
||
|
dataframe['fastk'] = stoch_fast['fastk']
|
||
|
# Stoch RSI
|
||
|
stoch_rsi = ta.STOCHRSI(dataframe)
|
||
|
dataframe['fastd_rsi'] = stoch_rsi['fastd']
|
||
|
dataframe['fastk_rsi'] = stoch_rsi['fastk']
|
||
|
# Bollinger bands
|
||
|
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||
|
dataframe['bb_lowerband'] = bollinger['lower']
|
||
|
dataframe['bb_middleband'] = bollinger['mid']
|
||
|
dataframe['bb_upperband'] = bollinger['upper']
|
||
|
# EMA - Exponential Moving Average
|
||
|
dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
|
||
|
dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
|
||
|
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
|
||
|
dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
|
||
|
dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
|
||
|
# SAR Parabolic
|
||
|
dataframe['sar'] = ta.SAR(dataframe)
|
||
|
# SMA - Simple Moving Average
|
||
|
dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
|
||
|
# TEMA - Triple Exponential Moving Average
|
||
|
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
|
||
|
# Hilbert Transform Indicator - SineWave
|
||
|
hilbert = ta.HT_SINE(dataframe)
|
||
|
dataframe['htsine'] = hilbert['sine']
|
||
|
dataframe['htleadsine'] = hilbert['leadsine']
|
||
|
|
||
|
# Pattern Recognition - Bullish candlestick patterns
|
||
|
# ------------------------------------
|
||
|
"""
|
||
|
# Hammer: values [0, 100]
|
||
|
dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
|
||
|
# Inverted Hammer: values [0, 100]
|
||
|
dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
|
||
|
# Dragonfly Doji: values [0, 100]
|
||
|
dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
|
||
|
# Piercing Line: values [0, 100]
|
||
|
dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
|
||
|
# Morningstar: values [0, 100]
|
||
|
dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
|
||
|
# Three White Soldiers: values [0, 100]
|
||
|
dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]
|
||
|
"""
|
||
|
|
||
|
# Pattern Recognition - Bearish candlestick patterns
|
||
|
# ------------------------------------
|
||
|
"""
|
||
|
# Hanging Man: values [0, 100]
|
||
|
dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
|
||
|
# Shooting Star: values [0, 100]
|
||
|
dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
|
||
|
# Gravestone Doji: values [0, 100]
|
||
|
dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
|
||
|
# Dark Cloud Cover: values [0, 100]
|
||
|
dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
|
||
|
# Evening Doji Star: values [0, 100]
|
||
|
dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
|
||
|
# Evening Star: values [0, 100]
|
||
|
dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)
|
||
|
"""
|
||
|
|
||
|
# Pattern Recognition - Bullish/Bearish candlestick patterns
|
||
|
# ------------------------------------
|
||
|
"""
|
||
|
# Three Line Strike: values [0, -100, 100]
|
||
|
dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
|
||
|
# Spinning Top: values [0, -100, 100]
|
||
|
dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
|
||
|
# Engulfing: values [0, -100, 100]
|
||
|
dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
|
||
|
# Harami: values [0, -100, 100]
|
||
|
dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
|
||
|
# Three Outside Up/Down: values [0, -100, 100]
|
||
|
dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
|
||
|
# Three Inside Up/Down: values [0, -100, 100]
|
||
|
dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]
|
||
|
"""
|
||
|
|
||
|
# Chart type
|
||
|
# ------------------------------------
|
||
|
# Heikinashi stategy
|
||
|
heikinashi = qtpylib.heikinashi(dataframe)
|
||
|
dataframe['ha_open'] = heikinashi['open']
|
||
|
dataframe['ha_close'] = heikinashi['close']
|
||
|
dataframe['ha_high'] = heikinashi['high']
|
||
|
dataframe['ha_low'] = heikinashi['low']
|
||
|
|
||
|
return dataframe
|
||
|
|
||
|
@staticmethod
|
||
|
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
|
||
|
"""
|
||
|
Define the buy strategy parameters to be used by hyperopt
|
||
|
"""
|
||
|
def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
|
||
|
"""
|
||
|
Buy strategy Hyperopt will build and use
|
||
|
"""
|
||
|
conditions = []
|
||
|
# GUARDS AND TRENDS
|
||
|
if 'uptrend_long_ema' in params and params['uptrend_long_ema']['enabled']:
|
||
|
conditions.append(dataframe['ema50'] > dataframe['ema100'])
|
||
|
if 'macd_below_zero' in params and params['macd_below_zero']['enabled']:
|
||
|
conditions.append(dataframe['macd'] < 0)
|
||
|
if 'uptrend_short_ema' in params and params['uptrend_short_ema']['enabled']:
|
||
|
conditions.append(dataframe['ema5'] > dataframe['ema10'])
|
||
|
if 'mfi' in params and params['mfi']['enabled']:
|
||
|
conditions.append(dataframe['mfi'] < params['mfi']['value'])
|
||
|
if 'fastd' in params and params['fastd']['enabled']:
|
||
|
conditions.append(dataframe['fastd'] < params['fastd']['value'])
|
||
|
if 'adx' in params and params['adx']['enabled']:
|
||
|
conditions.append(dataframe['adx'] > params['adx']['value'])
|
||
|
if 'rsi' in params and params['rsi']['enabled']:
|
||
|
conditions.append(dataframe['rsi'] < params['rsi']['value'])
|
||
|
if 'over_sar' in params and params['over_sar']['enabled']:
|
||
|
conditions.append(dataframe['close'] > dataframe['sar'])
|
||
|
if 'green_candle' in params and params['green_candle']['enabled']:
|
||
|
conditions.append(dataframe['close'] > dataframe['open'])
|
||
|
if 'uptrend_sma' in params and params['uptrend_sma']['enabled']:
|
||
|
prevsma = dataframe['sma'].shift(1)
|
||
|
conditions.append(dataframe['sma'] > prevsma)
|
||
|
|
||
|
# TRIGGERS
|
||
|
triggers = {
|
||
|
'lower_bb': (
|
||
|
dataframe['close'] < dataframe['bb_lowerband']
|
||
|
),
|
||
|
'lower_bb_tema': (
|
||
|
dataframe['tema'] < dataframe['bb_lowerband']
|
||
|
),
|
||
|
'faststoch10': (qtpylib.crossed_above(
|
||
|
dataframe['fastd'], 10.0
|
||
|
)),
|
||
|
'ao_cross_zero': (qtpylib.crossed_above(
|
||
|
dataframe['ao'], 0.0
|
||
|
)),
|
||
|
'ema3_cross_ema10': (qtpylib.crossed_above(
|
||
|
dataframe['ema3'], dataframe['ema10']
|
||
|
)),
|
||
|
'macd_cross_signal': (qtpylib.crossed_above(
|
||
|
dataframe['macd'], dataframe['macdsignal']
|
||
|
)),
|
||
|
'sar_reversal': (qtpylib.crossed_above(
|
||
|
dataframe['close'], dataframe['sar']
|
||
|
)),
|
||
|
'ht_sine': (qtpylib.crossed_above(
|
||
|
dataframe['htleadsine'], dataframe['htsine']
|
||
|
)),
|
||
|
'heiken_reversal_bull': (
|
||
|
(qtpylib.crossed_above(dataframe['ha_close'], dataframe['ha_open'])) &
|
||
|
(dataframe['ha_low'] == dataframe['ha_open'])
|
||
|
),
|
||
|
'di_cross': (qtpylib.crossed_above(
|
||
|
dataframe['plus_di'], dataframe['minus_di']
|
||
|
)),
|
||
|
}
|
||
|
conditions.append(triggers.get(params['trigger']['type']))
|
||
|
|
||
|
dataframe.loc[
|
||
|
reduce(lambda x, y: x & y, conditions),
|
||
|
'buy'] = 1
|
||
|
|
||
|
return dataframe
|
||
|
|
||
|
return populate_buy_trend
|
||
|
|
||
|
@staticmethod
|
||
|
def indicator_space() -> Dict[str, Any]:
|
||
|
"""
|
||
|
Define your Hyperopt space for searching strategy parameters
|
||
|
"""
|
||
|
return {
|
||
|
'macd_below_zero': hp.choice('macd_below_zero', [
|
||
|
{'enabled': False},
|
||
|
{'enabled': True}
|
||
|
]),
|
||
|
'mfi': hp.choice('mfi', [
|
||
|
{'enabled': False},
|
||
|
{'enabled': True, 'value': hp.quniform('mfi-value', 10, 25, 5)}
|
||
|
]),
|
||
|
'fastd': hp.choice('fastd', [
|
||
|
{'enabled': False},
|
||
|
{'enabled': True, 'value': hp.quniform('fastd-value', 15, 45, 5)}
|
||
|
]),
|
||
|
'adx': hp.choice('adx', [
|
||
|
{'enabled': False},
|
||
|
{'enabled': True, 'value': hp.quniform('adx-value', 20, 50, 5)}
|
||
|
]),
|
||
|
'rsi': hp.choice('rsi', [
|
||
|
{'enabled': False},
|
||
|
{'enabled': True, 'value': hp.quniform('rsi-value', 20, 40, 5)}
|
||
|
]),
|
||
|
'uptrend_long_ema': hp.choice('uptrend_long_ema', [
|
||
|
{'enabled': False},
|
||
|
{'enabled': True}
|
||
|
]),
|
||
|
'uptrend_short_ema': hp.choice('uptrend_short_ema', [
|
||
|
{'enabled': False},
|
||
|
{'enabled': True}
|
||
|
]),
|
||
|
'over_sar': hp.choice('over_sar', [
|
||
|
{'enabled': False},
|
||
|
{'enabled': True}
|
||
|
]),
|
||
|
'green_candle': hp.choice('green_candle', [
|
||
|
{'enabled': False},
|
||
|
{'enabled': True}
|
||
|
]),
|
||
|
'uptrend_sma': hp.choice('uptrend_sma', [
|
||
|
{'enabled': False},
|
||
|
{'enabled': True}
|
||
|
]),
|
||
|
'trigger': hp.choice('trigger', [
|
||
|
{'type': 'lower_bb'},
|
||
|
{'type': 'lower_bb_tema'},
|
||
|
{'type': 'faststoch10'},
|
||
|
{'type': 'ao_cross_zero'},
|
||
|
{'type': 'ema3_cross_ema10'},
|
||
|
{'type': 'macd_cross_signal'},
|
||
|
{'type': 'sar_reversal'},
|
||
|
{'type': 'ht_sine'},
|
||
|
{'type': 'heiken_reversal_bull'},
|
||
|
{'type': 'di_cross'},
|
||
|
]),
|
||
|
}
|
||
|
|
||
|
@staticmethod
|
||
|
def generate_roi_table(params: Dict) -> Dict[int, float]:
|
||
|
"""
|
||
|
Generate the ROI table that will be used by Hyperopt
|
||
|
"""
|
||
|
roi_table = {}
|
||
|
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
|
||
|
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
|
||
|
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
|
||
|
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
|
||
|
|
||
|
return roi_table
|
||
|
|
||
|
@staticmethod
|
||
|
def stoploss_space() -> Dict[str, Any]:
|
||
|
"""
|
||
|
Stoploss Value to search
|
||
|
"""
|
||
|
return {
|
||
|
'stoploss': hp.quniform('stoploss', -0.5, -0.02, 0.02),
|
||
|
}
|
||
|
|
||
|
@staticmethod
|
||
|
def roi_space() -> Dict[str, Any]:
|
||
|
"""
|
||
|
Values to search for each ROI steps
|
||
|
"""
|
||
|
return {
|
||
|
'roi_t1': hp.quniform('roi_t1', 10, 120, 20),
|
||
|
'roi_t2': hp.quniform('roi_t2', 10, 60, 15),
|
||
|
'roi_t3': hp.quniform('roi_t3', 10, 40, 10),
|
||
|
'roi_p1': hp.quniform('roi_p1', 0.01, 0.04, 0.01),
|
||
|
'roi_p2': hp.quniform('roi_p2', 0.01, 0.07, 0.01),
|
||
|
'roi_p3': hp.quniform('roi_p3', 0.01, 0.20, 0.01),
|
||
|
}
|