2017-10-06 10:22:04 +00:00
|
|
|
import logging
|
2017-06-05 19:17:10 +00:00
|
|
|
import time
|
2017-05-24 19:52:41 +00:00
|
|
|
from datetime import timedelta
|
2017-10-06 10:22:04 +00:00
|
|
|
|
2017-08-27 14:12:28 +00:00
|
|
|
import arrow
|
2017-09-01 18:40:12 +00:00
|
|
|
import talib.abstract as ta
|
2017-10-29 08:16:53 +00:00
|
|
|
from pandas import DataFrame, to_datetime
|
2017-09-01 18:40:12 +00:00
|
|
|
|
2017-10-11 18:04:31 +00:00
|
|
|
from freqtrade import exchange
|
|
|
|
from freqtrade.exchange import Bittrex, get_ticker_history
|
2017-10-30 19:41:36 +00:00
|
|
|
from freqtrade.vendor.qtpylib.indicators import awesome_oscillator
|
2017-05-24 19:52:41 +00:00
|
|
|
|
|
|
|
logging.basicConfig(level=logging.DEBUG,
|
|
|
|
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
2017-10-29 07:36:03 +00:00
|
|
|
def parse_ticker_dataframe(ticker: list) -> DataFrame:
|
2017-09-09 09:26:33 +00:00
|
|
|
"""
|
2017-10-31 23:12:18 +00:00
|
|
|
Analyses the trend for the given ticker history
|
|
|
|
:param ticker: See exchange.get_ticker_history
|
2017-09-09 09:26:33 +00:00
|
|
|
:return: DataFrame
|
|
|
|
"""
|
2017-09-10 06:51:56 +00:00
|
|
|
df = DataFrame(ticker) \
|
|
|
|
.drop('BV', 1) \
|
2017-10-29 08:16:53 +00:00
|
|
|
.rename(columns={'C':'close', 'V':'volume', 'O':'open', 'H':'high', 'L':'low', 'T':'date'})
|
|
|
|
df['date'] = to_datetime(df['date'], utc=True, infer_datetime_format=True)
|
|
|
|
df.sort_values('date', inplace=True)
|
2017-10-22 18:50:07 +00:00
|
|
|
return df
|
2017-09-09 10:02:47 +00:00
|
|
|
|
2017-10-06 10:22:04 +00:00
|
|
|
|
2017-09-09 10:02:47 +00:00
|
|
|
def populate_indicators(dataframe: DataFrame) -> DataFrame:
|
|
|
|
"""
|
|
|
|
Adds several different TA indicators to the given DataFrame
|
|
|
|
"""
|
2017-10-20 09:56:44 +00:00
|
|
|
dataframe['sar'] = ta.SAR(dataframe)
|
2017-09-12 08:47:23 +00:00
|
|
|
dataframe['adx'] = ta.ADX(dataframe)
|
2017-09-29 06:37:45 +00:00
|
|
|
stoch = ta.STOCHF(dataframe)
|
|
|
|
dataframe['fastd'] = stoch['fastd']
|
|
|
|
dataframe['fastk'] = stoch['fastk']
|
|
|
|
dataframe['blower'] = ta.BBANDS(dataframe, nbdevup=2, nbdevdn=2)['lowerband']
|
2017-10-20 09:56:44 +00:00
|
|
|
dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
|
2017-10-15 13:54:26 +00:00
|
|
|
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
|
2017-09-29 06:37:45 +00:00
|
|
|
dataframe['mfi'] = ta.MFI(dataframe)
|
2017-10-20 10:14:28 +00:00
|
|
|
dataframe['cci'] = ta.CCI(dataframe)
|
2017-10-28 13:14:01 +00:00
|
|
|
dataframe['rsi'] = ta.RSI(dataframe)
|
|
|
|
dataframe['mom'] = ta.MOM(dataframe)
|
|
|
|
dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
|
|
|
|
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
|
2017-10-28 13:52:26 +00:00
|
|
|
dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
|
|
|
|
dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
|
2017-10-25 15:24:20 +00:00
|
|
|
dataframe['ao'] = awesome_oscillator(dataframe)
|
2017-10-28 13:43:34 +00:00
|
|
|
macd = ta.MACD(dataframe)
|
|
|
|
dataframe['macd'] = macd['macd']
|
|
|
|
dataframe['macdsignal'] = macd['macdsignal']
|
|
|
|
dataframe['macdhist'] = macd['macdhist']
|
2017-05-24 19:52:41 +00:00
|
|
|
return dataframe
|
|
|
|
|
|
|
|
|
2017-09-09 13:32:53 +00:00
|
|
|
def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
|
2017-05-24 19:52:41 +00:00
|
|
|
"""
|
2017-09-09 13:32:53 +00:00
|
|
|
Based on TA indicators, populates the buy trend for the given dataframe
|
2017-09-02 08:56:56 +00:00
|
|
|
:param dataframe: DataFrame
|
2017-09-09 13:32:53 +00:00
|
|
|
:return: DataFrame with buy column
|
2017-05-24 23:11:35 +00:00
|
|
|
"""
|
2017-10-29 14:16:23 +00:00
|
|
|
dataframe.ix[
|
2017-09-29 06:37:45 +00:00
|
|
|
(dataframe['close'] < dataframe['sma']) &
|
|
|
|
(dataframe['tema'] <= dataframe['blower']) &
|
2017-10-15 13:54:26 +00:00
|
|
|
(dataframe['mfi'] < 25) &
|
|
|
|
(dataframe['fastd'] < 25) &
|
|
|
|
(dataframe['adx'] > 30),
|
2017-09-12 08:47:23 +00:00
|
|
|
'buy'] = 1
|
2017-10-29 14:16:23 +00:00
|
|
|
dataframe.ix[dataframe['buy'] == 1, 'buy_price'] = dataframe['close']
|
2017-09-12 08:47:23 +00:00
|
|
|
|
2017-05-24 19:52:41 +00:00
|
|
|
return dataframe
|
|
|
|
|
|
|
|
|
2017-09-09 10:16:14 +00:00
|
|
|
def analyze_ticker(pair: str) -> DataFrame:
|
2017-09-09 13:32:53 +00:00
|
|
|
"""
|
|
|
|
Get ticker data for given currency pair, push it to a DataFrame and
|
|
|
|
add several TA indicators and buy signal to it
|
|
|
|
:return DataFrame with ticker data and indicator data
|
|
|
|
"""
|
2017-11-05 23:06:59 +00:00
|
|
|
data = get_ticker_history(pair)
|
2017-11-05 22:47:59 +00:00
|
|
|
dataframe = parse_ticker_dataframe(data)
|
2017-09-27 22:43:32 +00:00
|
|
|
|
|
|
|
if dataframe.empty:
|
2017-09-28 19:07:33 +00:00
|
|
|
logger.warning('Empty dataframe for pair %s', pair)
|
2017-09-27 22:43:32 +00:00
|
|
|
return dataframe
|
2017-10-06 10:22:04 +00:00
|
|
|
|
2017-09-09 10:16:14 +00:00
|
|
|
dataframe = populate_indicators(dataframe)
|
2017-09-09 13:32:53 +00:00
|
|
|
dataframe = populate_buy_trend(dataframe)
|
2017-09-09 10:16:14 +00:00
|
|
|
return dataframe
|
|
|
|
|
2017-10-06 10:22:04 +00:00
|
|
|
|
2017-09-01 19:11:46 +00:00
|
|
|
def get_buy_signal(pair: str) -> bool:
|
2017-05-24 19:52:41 +00:00
|
|
|
"""
|
2017-09-09 13:32:53 +00:00
|
|
|
Calculates a buy signal based several technical analysis indicators
|
2017-05-24 19:52:41 +00:00
|
|
|
:param pair: pair in format BTC_ANT or BTC-ANT
|
2017-09-09 13:32:53 +00:00
|
|
|
:return: True if pair is good for buying, False otherwise
|
2017-05-24 19:52:41 +00:00
|
|
|
"""
|
2017-09-09 10:16:14 +00:00
|
|
|
dataframe = analyze_ticker(pair)
|
2017-09-27 22:43:32 +00:00
|
|
|
|
|
|
|
if dataframe.empty:
|
|
|
|
return False
|
|
|
|
|
2017-05-24 19:52:41 +00:00
|
|
|
latest = dataframe.iloc[-1]
|
2017-05-24 23:11:35 +00:00
|
|
|
|
|
|
|
# Check if dataframe is out of date
|
|
|
|
signal_date = arrow.get(latest['date'])
|
|
|
|
if signal_date < arrow.now() - timedelta(minutes=10):
|
|
|
|
return False
|
|
|
|
|
2017-09-09 13:32:53 +00:00
|
|
|
signal = latest['buy'] == 1
|
2017-08-27 13:50:59 +00:00
|
|
|
logger.debug('buy_trigger: %s (pair=%s, signal=%s)', latest['date'], pair, signal)
|
2017-05-24 19:52:41 +00:00
|
|
|
return signal
|
|
|
|
|
|
|
|
|
2017-09-02 08:56:56 +00:00
|
|
|
def plot_dataframe(dataframe: DataFrame, pair: str) -> None:
|
2017-05-24 19:52:41 +00:00
|
|
|
"""
|
|
|
|
Plots the given dataframe
|
2017-09-02 08:56:56 +00:00
|
|
|
:param dataframe: DataFrame
|
2017-05-24 19:52:41 +00:00
|
|
|
:param pair: pair as str
|
|
|
|
:return: None
|
|
|
|
"""
|
|
|
|
|
2017-06-05 19:17:10 +00:00
|
|
|
import matplotlib
|
|
|
|
|
|
|
|
matplotlib.use("Qt5Agg")
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
2017-09-12 08:47:23 +00:00
|
|
|
# Two subplots sharing x axis
|
2017-10-15 13:54:26 +00:00
|
|
|
fig, (ax1, ax2, ax3) = plt.subplots(3, sharex=True)
|
2017-08-27 13:40:27 +00:00
|
|
|
fig.suptitle(pair, fontsize=14, fontweight='bold')
|
2017-05-24 19:52:41 +00:00
|
|
|
ax1.plot(dataframe.index.values, dataframe['close'], label='close')
|
|
|
|
# ax1.plot(dataframe.index.values, dataframe['sell'], 'ro', label='sell')
|
2017-09-29 06:37:45 +00:00
|
|
|
ax1.plot(dataframe.index.values, dataframe['sma'], '--', label='SMA')
|
2017-10-15 13:54:26 +00:00
|
|
|
ax1.plot(dataframe.index.values, dataframe['tema'], ':', label='TEMA')
|
|
|
|
ax1.plot(dataframe.index.values, dataframe['blower'], '-.', label='BB low')
|
2017-09-29 06:37:45 +00:00
|
|
|
ax1.plot(dataframe.index.values, dataframe['buy_price'], 'bo', label='buy')
|
2017-05-24 19:52:41 +00:00
|
|
|
ax1.legend()
|
|
|
|
|
2017-10-15 13:54:26 +00:00
|
|
|
ax2.plot(dataframe.index.values, dataframe['adx'], label='ADX')
|
2017-09-29 06:37:45 +00:00
|
|
|
ax2.plot(dataframe.index.values, dataframe['mfi'], label='MFI')
|
2017-10-06 10:22:04 +00:00
|
|
|
# ax2.plot(dataframe.index.values, [25] * len(dataframe.index.values))
|
2017-05-24 21:28:40 +00:00
|
|
|
ax2.legend()
|
2017-05-24 19:52:41 +00:00
|
|
|
|
2017-10-15 13:54:26 +00:00
|
|
|
ax3.plot(dataframe.index.values, dataframe['fastk'], label='k')
|
|
|
|
ax3.plot(dataframe.index.values, dataframe['fastd'], label='d')
|
|
|
|
ax3.plot(dataframe.index.values, [20] * len(dataframe.index.values))
|
|
|
|
ax3.legend()
|
|
|
|
|
2017-05-24 19:52:41 +00:00
|
|
|
# Fine-tune figure; make subplots close to each other and hide x ticks for
|
|
|
|
# all but bottom plot.
|
2017-08-27 13:40:27 +00:00
|
|
|
fig.subplots_adjust(hspace=0)
|
|
|
|
plt.setp([a.get_xticklabels() for a in fig.axes[:-1]], visible=False)
|
2017-05-24 19:52:41 +00:00
|
|
|
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
2017-09-08 21:10:22 +00:00
|
|
|
# Install PYQT5==5.9 manually if you want to test this helper function
|
2017-05-24 19:52:41 +00:00
|
|
|
while True:
|
2017-10-31 23:12:18 +00:00
|
|
|
exchange._API = Bittrex({'key': '', 'secret': ''})
|
2017-09-29 06:37:29 +00:00
|
|
|
test_pair = 'BTC_ETH'
|
2017-10-06 10:22:04 +00:00
|
|
|
# for pair in ['BTC_ANT', 'BTC_ETH', 'BTC_GNT', 'BTC_ETC']:
|
|
|
|
# get_buy_signal(pair)
|
2017-09-12 08:49:10 +00:00
|
|
|
plot_dataframe(analyze_ticker(test_pair), test_pair)
|
2017-06-05 19:17:10 +00:00
|
|
|
time.sleep(60)
|