2022-05-17 15:13:38 +00:00
|
|
|
import logging
|
2022-10-16 08:36:58 +00:00
|
|
|
import sys
|
2022-10-09 19:11:37 +00:00
|
|
|
from pathlib import Path
|
2022-07-11 09:33:59 +00:00
|
|
|
from typing import Any, Dict
|
2022-07-29 06:12:50 +00:00
|
|
|
|
2022-05-17 15:13:38 +00:00
|
|
|
from catboost import CatBoostRegressor, Pool
|
|
|
|
|
2022-09-10 14:54:13 +00:00
|
|
|
from freqtrade.freqai.base_models.BaseRegressionModel import BaseRegressionModel
|
2022-09-07 16:58:55 +00:00
|
|
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
2022-05-17 15:13:38 +00:00
|
|
|
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
2022-07-09 08:13:33 +00:00
|
|
|
class CatboostRegressor(BaseRegressionModel):
|
2022-05-17 15:13:38 +00:00
|
|
|
"""
|
2023-04-08 10:09:53 +00:00
|
|
|
User created prediction model. The class inherits IFreqaiModel, which
|
|
|
|
means it has full access to all Frequency AI functionality. Typically,
|
|
|
|
users would use this to override the common `fit()`, `train()`, or
|
|
|
|
`predict()` methods to add their custom data handling tools or change
|
|
|
|
various aspects of the training that cannot be configured via the
|
|
|
|
top level config.json file.
|
2022-05-17 15:13:38 +00:00
|
|
|
"""
|
|
|
|
|
2022-09-07 16:58:55 +00:00
|
|
|
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
|
2022-05-17 15:13:38 +00:00
|
|
|
"""
|
2022-05-22 15:51:49 +00:00
|
|
|
User sets up the training and test data to fit their desired model here
|
2023-04-08 10:09:53 +00:00
|
|
|
:param data_dictionary: the dictionary holding all data for train, test,
|
|
|
|
labels, weights
|
|
|
|
:param dk: The datakitchen object for the current coin/model
|
2022-05-17 15:13:38 +00:00
|
|
|
"""
|
|
|
|
|
|
|
|
train_data = Pool(
|
|
|
|
data=data_dictionary["train_features"],
|
|
|
|
label=data_dictionary["train_labels"],
|
|
|
|
weight=data_dictionary["train_weights"],
|
|
|
|
)
|
2022-07-25 17:40:13 +00:00
|
|
|
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) == 0:
|
|
|
|
test_data = None
|
|
|
|
else:
|
|
|
|
test_data = Pool(
|
|
|
|
data=data_dictionary["test_features"],
|
|
|
|
label=data_dictionary["test_labels"],
|
|
|
|
weight=data_dictionary["test_weights"],
|
|
|
|
)
|
2022-05-17 15:13:38 +00:00
|
|
|
|
2022-09-07 16:58:55 +00:00
|
|
|
init_model = self.get_init_model(dk.pair)
|
2022-09-06 18:30:37 +00:00
|
|
|
|
2022-05-17 15:13:38 +00:00
|
|
|
model = CatBoostRegressor(
|
2022-10-06 16:59:35 +00:00
|
|
|
allow_writing_files=True,
|
2022-10-11 17:05:46 +00:00
|
|
|
train_dir=Path(dk.data_path),
|
2022-07-03 08:59:38 +00:00
|
|
|
**self.model_training_parameters,
|
2022-05-17 15:13:38 +00:00
|
|
|
)
|
2022-07-25 17:40:13 +00:00
|
|
|
|
2022-10-16 08:36:58 +00:00
|
|
|
model.fit(X=train_data, eval_set=test_data, init_model=init_model,
|
|
|
|
log_cout=sys.stdout, log_cerr=sys.stderr)
|
2022-07-26 15:29:29 +00:00
|
|
|
|
2022-05-17 15:13:38 +00:00
|
|
|
return model
|