freqtrade_origin/freqtrade/commands/strategy_utils_commands.py

172 lines
6.8 KiB
Python
Raw Normal View History

import logging
import sys
import time
2023-03-05 15:19:26 +00:00
from pathlib import Path
from typing import Any, Dict
import pandas as pd
from tabulate import tabulate
from freqtrade.configuration import setup_utils_configuration
from freqtrade.enums import RunMode
from freqtrade.resolvers import StrategyResolver
from freqtrade.strategy.backtest_lookahead_bias_checker import BacktestLookaheadBiasChecker
from freqtrade.strategy.strategyupdater import StrategyUpdater
logger = logging.getLogger(__name__)
def start_strategy_update(args: Dict[str, Any]) -> None:
"""
Start the strategy updating script
:param args: Cli args from Arguments()
:return: None
"""
if sys.version_info == (3, 8): # pragma: no cover
sys.exit("Freqtrade strategy updater requires Python version >= 3.9")
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
strategy_objs = StrategyResolver.search_all_objects(
config, enum_failed=False, recursive=config.get('recursive_strategy_search', False))
filtered_strategy_objs = []
2023-03-12 14:47:03 +00:00
if args['strategy_list']:
filtered_strategy_objs = [
strategy_obj for strategy_obj in strategy_objs
if strategy_obj['name'] in args['strategy_list']
]
else:
2023-03-12 14:47:03 +00:00
# Use all available entries.
filtered_strategy_objs = strategy_objs
processed_locations = set()
for strategy_obj in filtered_strategy_objs:
if strategy_obj['location'] not in processed_locations:
processed_locations.add(strategy_obj['location'])
start_conversion(strategy_obj, config)
def start_conversion(strategy_obj, config):
2023-03-05 15:19:26 +00:00
print(f"Conversion of {Path(strategy_obj['location']).name} started.")
instance_strategy_updater = StrategyUpdater()
start = time.perf_counter()
instance_strategy_updater.start(config, strategy_obj)
elapsed = time.perf_counter() - start
2023-03-05 15:19:26 +00:00
print(f"Conversion of {Path(strategy_obj['location']).name} took {elapsed:.1f} seconds.")
# except:
# pass
def start_backtest_lookahead_bias_checker(args: Dict[str, Any]) -> None:
"""
Start the backtest bias tester script
:param args: Cli args from Arguments()
:return: None
"""
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
if args['targeted_trade_amount'] < args['minimum_trade_amount']:
# add logic that tells the user to check the configuration
# since this combo doesn't make any sense.
pass
strategy_objs = StrategyResolver.search_all_objects(
config, enum_failed=False, recursive=config.get('recursive_strategy_search', False))
bias_checker_instances = []
filtered_strategy_objs = []
if 'strategy_list' in args and args['strategy_list'] is not None:
for args_strategy in args['strategy_list']:
for strategy_obj in strategy_objs:
if (strategy_obj['name'] == args_strategy
and strategy_obj not in filtered_strategy_objs):
filtered_strategy_objs.append(strategy_obj)
break
for filtered_strategy_obj in filtered_strategy_objs:
bias_checker_instances.append(
initialize_single_lookahead_bias_checker(filtered_strategy_obj, config, args))
else:
processed_locations = set()
for strategy_obj in strategy_objs:
if strategy_obj['location'] not in processed_locations:
processed_locations.add(strategy_obj['location'])
bias_checker_instances.append(
initialize_single_lookahead_bias_checker(strategy_obj, config, args))
text_table_bias_checker_instances(bias_checker_instances)
export_to_csv(args, bias_checker_instances)
def text_table_bias_checker_instances(bias_checker_instances):
headers = ['strategy', 'has_bias',
'total_signals', 'biased_entry_signals', 'biased_exit_signals', 'biased_indicators']
data = []
for current_instance in bias_checker_instances:
data.append(
[current_instance.strategy_obj['name'],
current_instance.current_analysis.has_bias,
current_instance.current_analysis.total_signals,
current_instance.current_analysis.false_entry_signals,
current_instance.current_analysis.false_exit_signals,
", ".join(current_instance.current_analysis.false_indicators)]
)
table = tabulate(data, headers=headers, tablefmt="orgtbl")
print(table)
def export_to_csv(args, bias_checker_instances):
def add_or_update_row(df, row_data):
strategy_col_name = 'strategy'
if row_data[strategy_col_name] in df[strategy_col_name].values:
# create temporary dataframe with a single row
# and use that to replace the previous data in there.
index = (df.index[df[strategy_col_name] ==
row_data[strategy_col_name]][0])
df.loc[index] = pd.Series(row_data, index='strategy')
else:
df = df.concat(row_data, ignore_index=True)
return df
csv_df = None
if not Path.exists(args['exportfilename']):
# If the file doesn't exist, create a new DataFrame from scratch
csv_df = pd.DataFrame(columns=['filename', 'strategy', 'has_bias',
'total_signals',
'biased_entry_signals', 'biased_exit_signals',
'biased_indicators'],
index='filename')
else:
# Read CSV file into a pandas dataframe
csv_df = pd.read_csv(args['exportfilename'])
for inst in bias_checker_instances:
new_row_data = {'filename': inst.strategy_obj['location'].parts[-1],
'strategy': inst.strategy_obj['name'],
'has_bias': inst.current_analysis.has_bias,
'total_signals': inst.current_analysis.total_signals,
'biased_entry_signals': inst.current_analysis.false_entry_signals,
'biased_exit_signals': inst.current_analysis.false_exit_signals,
'biased_indicators': ", ".join(inst.current_analysis.false_indicators)}
csv_df = add_or_update_row(csv_df, new_row_data)
if len(bias_checker_instances) > 0:
print(f"saving {args['exportfilename']}")
csv_df.to_csv(args['exportfilename'])
def initialize_single_lookahead_bias_checker(strategy_obj, config, args):
print(f"Bias test of {Path(strategy_obj['location']).name} started.")
start = time.perf_counter()
current_instance = BacktestLookaheadBiasChecker()
current_instance.start(config, strategy_obj, args)
elapsed = time.perf_counter() - start
print(f"checking look ahead bias via backtests of {Path(strategy_obj['location']).name} "
f"took {elapsed:.1f} seconds.")
return current_instance