freqtrade_origin/freqtrade/tests/optimize/test_backtest_detail.py

200 lines
8.1 KiB
Python
Raw Normal View History

2018-07-09 19:38:49 +00:00
# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, unused-argument
import logging
from unittest.mock import MagicMock
from typing import NamedTuple
2018-07-09 19:38:49 +00:00
from pandas import DataFrame
2018-07-09 19:38:49 +00:00
import pytest
from arrow import get as getdate
2018-07-09 19:38:49 +00:00
from freqtrade.optimize.backtesting import Backtesting
from freqtrade.tests.conftest import patch_exchange, log_has
class BTContainer(NamedTuple):
"""
NamedTuple Defining BacktestResults inputs.
"""
data: DataFrame
stop_loss: float
roi: float
trades: int
profit_perc: float
sl: float
2018-07-09 19:38:49 +00:00
columns = ['date', 'open', 'high', 'low', 'close', 'volume', 'buy', 'sell']
data_profit = DataFrame([
[getdate('2018-07-08 18:00:00').datetime, 0.0009910,
0.001011, 0.00098618, 0.001000, 12345, 1, 0],
[getdate('2018-07-08 19:00:00').datetime, 0.001000,
0.001010, 0.0009900, 0.0009900, 12345, 0, 0],
[getdate('2018-07-08 20:00:00').datetime, 0.0009900,
0.001011, 0.00091618, 0.0009900, 12345, 0, 0],
[getdate('2018-07-08 21:00:00').datetime, 0.001000,
0.001011, 0.00098618, 0.001100, 12345, 0, 1],
[getdate('2018-07-08 22:00:00').datetime, 0.001000,
0.001011, 0.00098618, 0.0009900, 12345, 0, 0]
], columns=columns)
tc_profit1 = BTContainer(data=data_profit, stop_loss=-0.01, roi=1, trades=1,
profit_perc=0.10557, sl=False) # should be stoploss - drops 8%
tc_profit2 = BTContainer(data=data_profit, stop_loss=-0.10, roi=1,
trades=1, profit_perc=0.10557, sl=True)
tc_loss0 = BTContainer(data=DataFrame([
[getdate('2018-07-08 18:00:00').datetime, 0.0009910,
0.001011, 0.00098618, 0.001000, 12345, 1, 0],
[getdate('2018-07-08 19:00:00').datetime, 0.001000,
0.001010, 0.0009900, 0.001000, 12345, 0, 0],
[getdate('2018-07-08 20:00:00').datetime, 0.001000,
0.001011, 0.0010618, 0.00091618, 12345, 0, 0],
[getdate('2018-07-08 21:00:00').datetime, 0.001000,
0.001011, 0.00098618, 0.00091618, 12345, 0, 0],
[getdate('2018-07-08 22:00:00').datetime, 0.001000,
0.001011, 0.00098618, 0.00091618, 12345, 0, 0]
], columns=columns),
stop_loss=-0.05, roi=1, trades=1, profit_perc=-0.08839, sl=True)
# Test 1 Minus 8% Close
# Candle Data for test 1 close at -8% (9200)
# Test with Stop-loss at 1%
tc1 = BTContainer(data=DataFrame([
[getdate('2018-06-10 08:00:00').datetime, 10000, 10050, 9950, 9975, 12345, 1, 0],
[getdate('2018-06-10 09:00:00').datetime, 9975, 10025, 9925, 9950, 12345, 0, 0],
[getdate('2018-06-10 10:00:00').datetime, 9950, 10000, 9960, 9955, 12345, 0, 0],
[getdate('2018-06-10 11:00:00').datetime, 9955, 9975, 9955, 9990, 12345, 0, 0],
[getdate('2018-06-10 12:00:00').datetime, 9990, 9990, 9200, 9200, 12345, 0, 0]
], columns=columns),
stop_loss=-0.01, roi=1, trades=1, profit_perc=-0.07999, sl=True)
# Test 2 Minus 4% Low, minus 1% close
# Candle Data for test 2
# Test with Stop-Loss at 3%
tc2 = BTContainer(data=DataFrame([
[getdate('2018-06-10 08:00:00').datetime, 10000, 10050, 9950, 9975, 12345, 1, 0],
[getdate('2018-06-10 09:00:00').datetime, 9975, 10025, 9925, 9950, 12345, 0, 0],
[getdate('2018-06-10 10:00:00').datetime, 9950, 10000, 9600, 9925, 12345, 0, 0],
[getdate('2018-06-10 11:00:00').datetime, 9925, 9975, 9875, 9900, 12345, 0, 0],
[getdate('2018-06-10 12:00:00').datetime, 9900, 9950, 9850, 9900, 12345, 0, 0]
], columns=columns), stop_loss=-0.03, roi=1, trades=1, profit_perc=-0.00999, sl=False) #
# Test 3 Candle drops 4%, Recovers 1%.
# Entry Criteria Met
# Candle drops 20%
# Candle Data for test 3
# Test with Stop-Loss at 2%
tc3 = BTContainer(data=DataFrame([
[getdate('2018-06-10 08:00:00').datetime, 10000, 10050, 9950, 9975, 12345, 1, 0],
[getdate('2018-06-10 09:00:00').datetime, 9975, 10025, 9600, 9950, 12345, 0, 0],
[getdate('2018-06-10 10:00:00').datetime, 9950, 10000, 9900, 9925, 12345, 1, 0],
[getdate('2018-06-10 11:00:00').datetime, 9925, 9975, 8000, 8000, 12345, 0, 0],
[getdate('2018-06-10 12:00:00').datetime, 9900, 9950, 9950, 9900, 12345, 0, 0]
], columns=columns), stop_loss=-0.02, roi=1, trades=1, profit_perc=-0.19999, sl=True) #
# Test 4 Minus 3% / recovery +15%
# Candle Data for test 4 Candle drops 3% Closed 15% up
# Test with Stop-loss at 2% ROI 6%
tc4 = BTContainer(data=DataFrame([
[getdate('2018-06-10 08:00:00').datetime, 10000, 10050, 9950, 9975, 12345, 1, 0],
[getdate('2018-06-10 09:00:00').datetime, 9975, 11500, 9700, 11500, 12345, 0, 0],
[getdate('2018-06-10 10:00:00').datetime, 9950, 10000, 9900, 9925, 12345, 0, 0],
[getdate('2018-06-10 11:00:00').datetime, 9925, 9975, 9875, 9900, 12345, 0, 0],
[getdate('2018-06-10 12:00:00').datetime, 9900, 9950, 9850, 9900, 12345, 0, 0]
], columns=columns),
stop_loss=-0.02, roi=0.06, trades=1, profit_perc=-0.141, sl=True)
# Test 5 / Drops 0.5% Closes +20%
# Candle Data for test 5
# Set stop-loss at 1% ROI 3%
tc5 = BTContainer(data=DataFrame([
[getdate('2018-06-10 08:00:00').datetime, 10000, 10050, 9950, 9975, 12345, 1, 0],
[getdate('2018-06-10 09:00:00').datetime, 9975, 12000, 9950, 12000, 12345, 0, 0],
[getdate('2018-06-10 10:00:00').datetime, 9950, 10000, 9900, 9925, 12345, 0, 0],
[getdate('2018-06-10 11:00:00').datetime, 9925, 9975, 9945, 9900, 12345, 0, 0],
[getdate('2018-06-10 12:00:00').datetime, 9900, 9950, 9850, 9900, 12345, 0, 0]
], columns=columns),
stop_loss=-0.01, roi=0.03, trades=1, profit_perc=-0.177, sl=True)
# Test 6 / Drops 3% / Recovers 6% Positive / Closes 1% positve
# Candle Data for test 6
# Set stop-loss at 2% ROI at 5%
tc6 = BTContainer(data=DataFrame([
[getdate('2018-06-10 08:00:00').datetime, 10000, 10050, 9950, 9975, 12345, 1, 0],
[getdate('2018-06-10 09:00:00').datetime, 9975, 10600, 9700, 10100, 12345, 0, 0],
[getdate('2018-06-10 10:00:00').datetime, 9950, 10000, 9900, 9925, 12345, 0, 0],
[getdate('2018-06-10 11:00:00').datetime, 9925, 9975, 9945, 9900, 12345, 0, 0],
[getdate('2018-06-10 12:00:00').datetime, 9900, 9950, 9850, 9900, 12345, 0, 0]
], columns=columns), stop_loss=-0.02, roi=0.05,
trades=1, profit_perc=-0.025, sl=False)
# Test 7 - 6% Positive / 1% Negative / Close 1% Positve
# Candle Data for test 7
# Set stop-loss at 2% ROI at 3%
tc7 = BTContainer(data=DataFrame([
[getdate('2018-06-10 08:00:00').datetime, 10000, 10050, 9950, 9975, 12345, 1, 0],
[getdate('2018-06-10 09:00:00').datetime, 9975, 10600, 9900, 10100, 12345, 0, 0],
[getdate('2018-06-10 10:00:00').datetime, 9950, 10000, 9900, 9925, 12345, 0, 0],
[getdate('2018-06-10 11:00:00').datetime, 9925, 9975, 9945, 9900, 12345, 0, 0],
[getdate('2018-06-10 12:00:00').datetime, 9900, 9950, 9850, 9900, 12345, 0, 0]
], columns=columns), stop_loss=-0.02, roi=0.03,
trades=1, profit_perc=-0.025, sl=False)
TESTS = [
# tc_profit1,
# tc_profit2,
tc_loss0,
tc1,
tc2,
tc3,
tc4,
tc5,
tc6,
tc7,
]
@pytest.mark.parametrize("data", TESTS)
def test_backtest_results(default_conf, fee, mocker, caplog, data) -> None:
2018-07-09 19:38:49 +00:00
"""
run functional tests
"""
default_conf["stoploss"] = data.stop_loss
default_conf["minimal_roi"] = {"0": data.roi}
2018-07-09 19:38:49 +00:00
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
mocker.patch.multiple('freqtrade.analyze.Analyze',
populate_sell_trend=MagicMock(return_value=data.data),
populate_buy_trend=MagicMock(return_value=data.data))
2018-07-09 19:38:49 +00:00
patch_exchange(mocker)
backtesting = Backtesting(default_conf)
caplog.set_level(logging.DEBUG)
pair = 'UNITTEST/BTC'
# Dummy data as we mock the analyze functions
data_processed = {pair: DataFrame()}
2018-07-09 19:38:49 +00:00
results = backtesting.backtest(
{
'stake_amount': default_conf['stake_amount'],
'processed': data_processed,
'max_open_trades': 10,
'realistic': True
}
)
print(results.T)
assert len(results) == data.trades
assert round(results["profit_percent"].sum(), 3) == round(data.profit_perc, 3)
if data.sl:
2018-07-09 19:38:49 +00:00
assert log_has("Stop loss hit.", caplog.record_tuples)
else:
assert not log_has("Stop loss hit.", caplog.record_tuples)