freqtrade_origin/freqtrade/optimize/hyperopt_auto.py

102 lines
3.6 KiB
Python
Raw Normal View History

"""
HyperOptAuto class.
This module implements a convenience auto-hyperopt class, which can be used together with strategies
that implement IHyperStrategy interface.
"""
2024-05-12 15:16:02 +00:00
import logging
2021-03-25 08:00:52 +00:00
from contextlib import suppress
from typing import Callable, Dict, List
2021-03-25 08:00:52 +00:00
from freqtrade.exceptions import OperationalException
2021-03-27 09:40:48 +00:00
2021-03-25 08:00:52 +00:00
with suppress(ImportError):
from skopt.space import Dimension
from freqtrade.optimize.hyperopt_interface import EstimatorType, IHyperOpt
logger = logging.getLogger(__name__)
def _format_exception_message(space: str, ignore_missing_space: bool) -> None:
2024-05-12 15:16:02 +00:00
msg = (
f"The '{space}' space is included into the hyperoptimization "
f"but no parameter for this space was found in your Strategy. "
)
if ignore_missing_space:
logger.warning(msg + "This space will be ignored.")
else:
raise OperationalException(
msg + f"Please make sure to have parameters for this space enabled for optimization "
2024-05-12 15:16:02 +00:00
f"or remove the '{space}' space from hyperoptimization."
)
class HyperOptAuto(IHyperOpt):
"""
This class delegates functionality to Strategy(IHyperStrategy) and Strategy.HyperOpt classes.
Most of the time Strategy.HyperOpt class would only implement indicator_space and
sell_indicator_space methods, but other hyperopt methods can be overridden as well.
"""
def _get_func(self, name) -> Callable:
"""
Return a function defined in Strategy.HyperOpt class, or one defined in super() class.
:param name: function name.
:return: a requested function.
"""
2024-05-12 15:16:02 +00:00
hyperopt_cls = getattr(self.strategy, "HyperOpt", None)
default_func = getattr(super(), name)
if hyperopt_cls:
return getattr(hyperopt_cls, name, default_func)
else:
return default_func
def _generate_indicator_space(self, category):
for attr_name, attr in self.strategy.enumerate_parameters(category):
if attr.optimize:
yield attr.get_space(attr_name)
def _get_indicator_space(self, category) -> List:
# TODO: is this necessary, or can we call "generate_space" directly?
indicator_space = list(self._generate_indicator_space(category))
if len(indicator_space) > 0:
return indicator_space
else:
_format_exception_message(
2024-05-12 15:16:02 +00:00
category, self.config.get("hyperopt_ignore_missing_space", False)
)
return []
2024-05-12 15:16:02 +00:00
def buy_indicator_space(self) -> List["Dimension"]:
return self._get_indicator_space("buy")
2024-05-12 15:16:02 +00:00
def sell_indicator_space(self) -> List["Dimension"]:
return self._get_indicator_space("sell")
2024-05-12 15:16:02 +00:00
def protection_space(self) -> List["Dimension"]:
return self._get_indicator_space("protection")
2021-08-03 05:10:04 +00:00
def generate_roi_table(self, params: Dict) -> Dict[int, float]:
2024-05-12 15:16:02 +00:00
return self._get_func("generate_roi_table")(params)
2024-05-12 15:16:02 +00:00
def roi_space(self) -> List["Dimension"]:
return self._get_func("roi_space")()
2024-05-12 15:16:02 +00:00
def stoploss_space(self) -> List["Dimension"]:
return self._get_func("stoploss_space")()
def generate_trailing_params(self, params: Dict) -> Dict:
2024-05-12 15:16:02 +00:00
return self._get_func("generate_trailing_params")(params)
2024-05-12 15:16:02 +00:00
def trailing_space(self) -> List["Dimension"]:
return self._get_func("trailing_space")()
2024-05-12 15:16:02 +00:00
def max_open_trades_space(self) -> List["Dimension"]:
return self._get_func("max_open_trades_space")()
2024-05-12 15:16:02 +00:00
def generate_estimator(self, dimensions: List["Dimension"], **kwargs) -> EstimatorType:
return self._get_func("generate_estimator")(dimensions=dimensions, **kwargs)