2021-07-17 16:19:49 +00:00
|
|
|
from typing import Any, Callable, NamedTuple, Optional, Union
|
|
|
|
|
2020-09-04 17:44:35 +00:00
|
|
|
import pandas as pd
|
2021-07-17 16:19:49 +00:00
|
|
|
from mypy_extensions import KwArg
|
|
|
|
from pandas import DataFrame
|
2020-09-28 17:39:41 +00:00
|
|
|
|
2021-07-17 16:19:49 +00:00
|
|
|
from freqtrade.exceptions import OperationalException
|
2020-09-04 17:44:35 +00:00
|
|
|
from freqtrade.exchange import timeframe_to_minutes
|
|
|
|
|
|
|
|
|
2021-09-05 06:54:05 +00:00
|
|
|
PopulateIndicators = Callable[[Any, DataFrame, dict], DataFrame]
|
|
|
|
|
|
|
|
|
2021-07-17 16:19:49 +00:00
|
|
|
class InformativeData(NamedTuple):
|
|
|
|
asset: Optional[str]
|
|
|
|
timeframe: str
|
|
|
|
fmt: Union[str, Callable[[KwArg(str)], str], None]
|
|
|
|
ffill: bool
|
|
|
|
|
|
|
|
|
2020-09-04 18:02:31 +00:00
|
|
|
def merge_informative_pair(dataframe: pd.DataFrame, informative: pd.DataFrame,
|
2021-07-17 16:19:49 +00:00
|
|
|
timeframe: str, timeframe_inf: str, ffill: bool = True,
|
|
|
|
append_timeframe: bool = True,
|
|
|
|
date_column: str = 'date') -> pd.DataFrame:
|
2020-09-04 17:44:35 +00:00
|
|
|
"""
|
|
|
|
Correctly merge informative samples to the original dataframe, avoiding lookahead bias.
|
|
|
|
|
|
|
|
Since dates are candle open dates, merging a 15m candle that starts at 15:00, and a
|
|
|
|
1h candle that starts at 15:00 will result in all candles to know the close at 16:00
|
|
|
|
which they should not know.
|
|
|
|
|
|
|
|
Moves the date of the informative pair by 1 time interval forward.
|
|
|
|
This way, the 14:00 1h candle is merged to 15:00 15m candle, since the 14:00 1h candle is the
|
|
|
|
last candle that's closed at 15:00, 15:15, 15:30 or 15:45.
|
|
|
|
|
2020-09-04 18:02:31 +00:00
|
|
|
Assuming inf_tf = '1d' - then the resulting columns will be:
|
|
|
|
date_1d, open_1d, high_1d, low_1d, close_1d, rsi_1d
|
|
|
|
|
2020-09-04 17:44:35 +00:00
|
|
|
:param dataframe: Original dataframe
|
|
|
|
:param informative: Informative pair, most likely loaded via dp.get_pair_dataframe
|
2020-09-04 18:09:02 +00:00
|
|
|
:param timeframe: Timeframe of the original pair sample.
|
2020-09-04 17:44:35 +00:00
|
|
|
:param timeframe_inf: Timeframe of the informative pair sample.
|
|
|
|
:param ffill: Forwardfill missing values - optional but usually required
|
2021-07-17 16:19:49 +00:00
|
|
|
:param append_timeframe: Rename columns by appending timeframe.
|
|
|
|
:param date_column: A custom date column name.
|
2021-01-04 12:47:16 +00:00
|
|
|
:return: Merged dataframe
|
|
|
|
:raise: ValueError if the secondary timeframe is shorter than the dataframe timeframe
|
2020-09-04 17:44:35 +00:00
|
|
|
"""
|
|
|
|
|
2020-09-04 18:09:02 +00:00
|
|
|
minutes_inf = timeframe_to_minutes(timeframe_inf)
|
2020-09-07 07:06:43 +00:00
|
|
|
minutes = timeframe_to_minutes(timeframe)
|
2021-01-04 12:47:16 +00:00
|
|
|
if minutes == minutes_inf:
|
2020-09-04 18:09:02 +00:00
|
|
|
# No need to forwardshift if the timeframes are identical
|
2021-07-17 16:19:49 +00:00
|
|
|
informative['date_merge'] = informative[date_column]
|
2021-01-04 12:47:16 +00:00
|
|
|
elif minutes < minutes_inf:
|
|
|
|
# Subtract "small" timeframe so merging is not delayed by 1 small candle
|
|
|
|
# Detailed explanation in https://github.com/freqtrade/freqtrade/issues/4073
|
|
|
|
informative['date_merge'] = (
|
2021-07-17 16:19:49 +00:00
|
|
|
informative[date_column] + pd.to_timedelta(minutes_inf, 'm') -
|
|
|
|
pd.to_timedelta(minutes, 'm')
|
2021-08-06 22:19:36 +00:00
|
|
|
)
|
2020-09-04 18:09:02 +00:00
|
|
|
else:
|
2021-01-04 12:47:16 +00:00
|
|
|
raise ValueError("Tried to merge a faster timeframe to a slower timeframe."
|
|
|
|
"This would create new rows, and can throw off your regular indicators.")
|
2020-09-04 17:44:35 +00:00
|
|
|
|
2020-09-04 18:10:43 +00:00
|
|
|
# Rename columns to be unique
|
2021-07-17 16:19:49 +00:00
|
|
|
date_merge = 'date_merge'
|
|
|
|
if append_timeframe:
|
|
|
|
date_merge = f'date_merge_{timeframe_inf}'
|
|
|
|
informative.columns = [f"{col}_{timeframe_inf}" for col in informative.columns]
|
2020-09-04 17:44:35 +00:00
|
|
|
|
|
|
|
# Combine the 2 dataframes
|
|
|
|
# all indicators on the informative sample MUST be calculated before this point
|
|
|
|
dataframe = pd.merge(dataframe, informative, left_on='date',
|
2021-07-17 16:19:49 +00:00
|
|
|
right_on=date_merge, how='left')
|
|
|
|
dataframe = dataframe.drop(date_merge, axis=1)
|
2020-09-04 17:44:35 +00:00
|
|
|
|
|
|
|
if ffill:
|
|
|
|
dataframe = dataframe.ffill()
|
|
|
|
|
|
|
|
return dataframe
|
2021-03-17 08:58:23 +00:00
|
|
|
|
|
|
|
|
|
|
|
def stoploss_from_open(open_relative_stop: float, current_profit: float) -> float:
|
|
|
|
"""
|
|
|
|
|
|
|
|
Given the current profit, and a desired stop loss value relative to the open price,
|
|
|
|
return a stop loss value that is relative to the current price, and which can be
|
|
|
|
returned from `custom_stoploss`.
|
|
|
|
|
2021-03-17 13:44:10 +00:00
|
|
|
The requested stop can be positive for a stop above the open price, or negative for
|
|
|
|
a stop below the open price. The return value is always >= 0.
|
|
|
|
|
|
|
|
Returns 0 if the resulting stop price would be above the current price.
|
|
|
|
|
|
|
|
:param open_relative_stop: Desired stop loss percentage relative to open price
|
2021-03-17 08:58:23 +00:00
|
|
|
:param current_profit: The current profit percentage
|
2021-03-17 13:44:10 +00:00
|
|
|
:return: Positive stop loss value relative to current price
|
2021-03-17 08:58:23 +00:00
|
|
|
"""
|
|
|
|
|
2021-03-17 13:44:10 +00:00
|
|
|
# formula is undefined for current_profit -1, return maximum value
|
2021-03-17 08:58:23 +00:00
|
|
|
if current_profit == -1:
|
|
|
|
return 1
|
|
|
|
|
2021-03-17 13:44:10 +00:00
|
|
|
stoploss = 1-((1+open_relative_stop)/(1+current_profit))
|
|
|
|
|
|
|
|
# negative stoploss values indicate the requested stop price is higher than the current price
|
|
|
|
return max(stoploss, 0.0)
|
2021-07-17 15:09:08 +00:00
|
|
|
|
|
|
|
|
|
|
|
def stoploss_from_absolute(stop_rate: float, current_rate: float) -> float:
|
|
|
|
"""
|
|
|
|
Given current price and desired stop price, return a stop loss value that is relative to current
|
|
|
|
price.
|
|
|
|
:param stop_rate: Stop loss price.
|
|
|
|
:param current_rate: Current asset price.
|
|
|
|
:return: Positive stop loss value relative to current price
|
|
|
|
"""
|
|
|
|
return 1 - (stop_rate / current_rate)
|
2021-07-17 16:19:49 +00:00
|
|
|
|
|
|
|
|
|
|
|
def informative(timeframe: str, asset: str = '',
|
|
|
|
fmt: Optional[Union[str, Callable[[KwArg(str)], str]]] = None,
|
2021-09-05 06:54:05 +00:00
|
|
|
ffill: bool = True) -> Callable[[PopulateIndicators], PopulateIndicators]:
|
2021-07-17 16:19:49 +00:00
|
|
|
"""
|
|
|
|
A decorator for populate_indicators_Nn(self, dataframe, metadata), allowing these functions to
|
|
|
|
define informative indicators.
|
|
|
|
|
|
|
|
Example usage:
|
|
|
|
|
|
|
|
@informative('1h')
|
|
|
|
def populate_indicators_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
|
|
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
|
|
|
|
return dataframe
|
|
|
|
|
2021-09-05 06:54:05 +00:00
|
|
|
:param timeframe: Informative timeframe. Must always be equal or higher than strategy timeframe.
|
2021-07-17 16:19:49 +00:00
|
|
|
:param asset: Informative asset, for example BTC, BTC/USDT, ETH/BTC. Do not specify to use
|
|
|
|
current pair.
|
|
|
|
:param fmt: Column format (str) or column formatter (callable(name, asset, timeframe)). When not
|
2021-09-05 06:54:05 +00:00
|
|
|
specified, defaults to:
|
|
|
|
* {base}_{column}_{timeframe} if asset is specified and quote currency does match stake
|
2021-09-07 12:40:53 +00:00
|
|
|
currency.
|
2021-09-05 06:54:05 +00:00
|
|
|
* {base}_{quote}_{column}_{timeframe} if asset is specified and quote currency does not match
|
2021-09-07 12:40:53 +00:00
|
|
|
stake currency.
|
2021-09-05 06:54:05 +00:00
|
|
|
* {column}_{timeframe} if asset is not specified.
|
|
|
|
Format string supports these format variables:
|
|
|
|
* {asset} - full name of the asset, for example 'BTC/USDT'.
|
|
|
|
* {base} - base currency in lower case, for example 'eth'.
|
|
|
|
* {BASE} - same as {base}, except in upper case.
|
|
|
|
* {quote} - quote currency in lower case, for example 'usdt'.
|
|
|
|
* {QUOTE} - same as {quote}, except in upper case.
|
|
|
|
* {column} - name of dataframe column.
|
|
|
|
* {timeframe} - timeframe of informative dataframe.
|
|
|
|
:param ffill: ffill dataframe after merging informative pair.
|
2021-07-17 16:19:49 +00:00
|
|
|
"""
|
|
|
|
_asset = asset
|
|
|
|
_timeframe = timeframe
|
|
|
|
_fmt = fmt
|
|
|
|
_ffill = ffill
|
|
|
|
|
2021-09-05 06:54:05 +00:00
|
|
|
def decorator(fn: PopulateIndicators):
|
2021-07-17 16:19:49 +00:00
|
|
|
informative_pairs = getattr(fn, '_ft_informative', [])
|
|
|
|
informative_pairs.append(InformativeData(_asset, _timeframe, _fmt, _ffill))
|
|
|
|
setattr(fn, '_ft_informative', informative_pairs)
|
|
|
|
return fn
|
|
|
|
return decorator
|
|
|
|
|
|
|
|
|
|
|
|
def _format_pair_name(config, pair: str) -> str:
|
|
|
|
return pair.format(stake_currency=config['stake_currency'],
|
|
|
|
stake=config['stake_currency']).upper()
|
|
|
|
|
|
|
|
|
|
|
|
def _create_and_merge_informative_pair(strategy, dataframe: DataFrame,
|
|
|
|
metadata: dict, informative_data: InformativeData,
|
|
|
|
populate_indicators: Callable[[Any, DataFrame, dict],
|
|
|
|
DataFrame]):
|
|
|
|
asset = informative_data.asset or ''
|
|
|
|
timeframe = informative_data.timeframe
|
|
|
|
fmt = informative_data.fmt
|
|
|
|
ffill = informative_data.ffill
|
|
|
|
config = strategy.config
|
|
|
|
dp = strategy.dp
|
|
|
|
|
|
|
|
if asset:
|
|
|
|
# Insert stake currency if needed.
|
|
|
|
asset = _format_pair_name(config, asset)
|
|
|
|
else:
|
|
|
|
# Not specifying an asset will define informative dataframe for current pair.
|
|
|
|
asset = metadata['pair']
|
|
|
|
|
|
|
|
if '/' in asset:
|
|
|
|
base, quote = asset.split('/')
|
|
|
|
else:
|
|
|
|
# When futures are supported this may need reevaluation.
|
|
|
|
# base, quote = asset, None
|
|
|
|
raise OperationalException('Not implemented.')
|
|
|
|
|
|
|
|
# Default format. This optimizes for the common case: informative pairs using same stake
|
|
|
|
# currency. When quote currency matches stake currency, column name will omit base currency.
|
|
|
|
# This allows easily reconfiguring strategy to use different base currency. In a rare case
|
|
|
|
# where it is desired to keep quote currency in column name at all times user should specify
|
|
|
|
# fmt='{base}_{quote}_{column}_{timeframe}' format or similar.
|
|
|
|
if not fmt:
|
|
|
|
fmt = '{column}_{timeframe}' # Informatives of current pair
|
2021-09-07 12:40:53 +00:00
|
|
|
if quote != config['stake_currency']:
|
|
|
|
fmt = '{quote}_' + fmt # Informatives of different quote currency
|
|
|
|
if informative_data.asset:
|
|
|
|
fmt = '{base}_' + fmt # Informatives of other pair
|
2021-07-17 16:19:49 +00:00
|
|
|
|
|
|
|
inf_metadata = {'pair': asset, 'timeframe': timeframe}
|
|
|
|
inf_dataframe = dp.get_pair_dataframe(asset, timeframe)
|
|
|
|
inf_dataframe = populate_indicators(strategy, inf_dataframe, inf_metadata)
|
|
|
|
|
|
|
|
formatter: Any = None
|
|
|
|
if callable(fmt):
|
|
|
|
formatter = fmt # A custom user-specified formatter function.
|
|
|
|
else:
|
|
|
|
formatter = fmt.format # A default string formatter.
|
|
|
|
|
|
|
|
fmt_args = {
|
|
|
|
'BASE': base.upper(),
|
|
|
|
'QUOTE': quote.upper(),
|
|
|
|
'base': base.lower(),
|
|
|
|
'quote': quote.lower(),
|
|
|
|
'asset': asset,
|
|
|
|
'timeframe': timeframe,
|
|
|
|
}
|
|
|
|
inf_dataframe.rename(columns=lambda column: formatter(column=column, **fmt_args),
|
|
|
|
inplace=True)
|
|
|
|
|
|
|
|
date_column = formatter(column='date', **fmt_args)
|
|
|
|
if date_column in dataframe.columns:
|
|
|
|
raise OperationalException(f'Duplicate column name {date_column} exists in '
|
|
|
|
f'dataframe! Ensure column names are unique!')
|
|
|
|
dataframe = merge_informative_pair(dataframe, inf_dataframe, strategy.timeframe, timeframe,
|
|
|
|
ffill=ffill, append_timeframe=False,
|
|
|
|
date_column=date_column)
|
|
|
|
return dataframe
|