freqtrade_origin/scripts/plot_dataframe.py

290 lines
9.3 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
"""
2019-01-25 05:42:29 +00:00
Script to display when the bot will buy on specific pair(s)
Mandatory Cli parameters:
2019-01-25 05:42:29 +00:00
-p / --pairs: pair(s) to examine
Option but recommended
-s / --strategy: strategy to use
Optional Cli parameters
2019-01-25 05:42:29 +00:00
-d / --datadir: path to pair(s) backtest data
--timerange: specify what timerange of data to use.
2019-01-25 05:42:29 +00:00
-l / --live: Live, to download the latest ticker for the pair(s)
-db / --db-url: Show trades stored in database
Indicators recommended
Row 1: sma, ema3, ema5, ema10, ema50
Row 3: macd, rsi, fisher_rsi, mfi, slowd, slowk, fastd, fastk
Example of usage:
2019-01-26 09:56:29 +00:00
> python3 scripts/plot_dataframe.py --pairs BTC/EUR,XRP/BTC -d user_data/data/
--indicators1 sma,ema3 --indicators2 fastk,fastd
"""
import logging
import sys
from argparse import Namespace
from pathlib import Path
2019-03-23 18:18:10 +00:00
from typing import Any, Dict, List
import pandas as pd
import pytz
from plotly.offline import plot
from freqtrade import persistence
from freqtrade.arguments import Arguments, TimeRange
2018-12-13 05:34:37 +00:00
from freqtrade.data import history
2019-03-23 18:18:10 +00:00
from freqtrade.data.btanalysis import BT_DATA_COLUMNS, load_backtest_data
2019-05-28 05:00:57 +00:00
from freqtrade.plot.plotting import generate_graph
from freqtrade.exchange import Exchange
2019-05-25 18:14:31 +00:00
from freqtrade.optimize import setup_configuration
from freqtrade.persistence import Trade
from freqtrade.resolvers import StrategyResolver
2019-05-25 18:14:31 +00:00
from freqtrade.state import RunMode
logger = logging.getLogger(__name__)
_CONF: Dict[str, Any] = {}
timeZone = pytz.UTC
2019-05-28 18:23:16 +00:00
def load_trades(db_url: str = None, exportfilename: str = None) -> pd.DataFrame:
"""
Load trades, either from a DB (using dburl) or via a backtest export file.
:param db_url: Sqlite url (default format sqlite:///tradesv3.dry-run.sqlite)
:param exportfilename: Path to a file exported from backtesting
:returns: Dataframe containing Trades
"""
# TODO: Document and move to btanalysis
trades: pd.DataFrame = pd.DataFrame([], columns=BT_DATA_COLUMNS)
2019-06-01 04:26:03 +00:00
2019-05-28 18:23:16 +00:00
if db_url:
persistence.init(db_url, clean_open_orders=False)
columns = ["pair", "profit", "open_time", "close_time",
"open_rate", "close_rate", "duration"]
for x in Trade.query.all():
print("date: {}".format(x.open_date))
trades = pd.DataFrame([(t.pair, t.calc_profit(),
t.open_date.replace(tzinfo=timeZone),
t.close_date.replace(tzinfo=timeZone) if t.close_date else None,
t.open_rate, t.close_rate,
2019-01-25 05:42:29 +00:00
t.close_date.timestamp() - t.open_date.timestamp()
if t.close_date else None)
2019-05-28 18:23:16 +00:00
for t in Trade.query.all()],
columns=columns)
2019-05-28 18:23:16 +00:00
elif exportfilename:
2019-05-28 18:23:16 +00:00
file = Path(exportfilename)
if file.exists():
trades = load_backtest_data(file)
return trades
def generate_plot_file(fig, pair, ticker_interval, is_last) -> None:
"""
2019-01-25 05:42:29 +00:00
Generate a plot html file from pre populated fig plotly object
:return: None
"""
2019-01-25 05:42:29 +00:00
logger.info('Generate plot file for %s', pair)
pair_name = pair.replace("/", "_")
file_name = 'freqtrade-plot-' + pair_name + '-' + ticker_interval + '.html'
2019-01-25 05:42:29 +00:00
Path("user_data/plots").mkdir(parents=True, exist_ok=True)
2019-01-25 05:42:29 +00:00
2019-05-28 05:00:57 +00:00
plot(fig, filename=str(Path('user_data/plots').joinpath(file_name)),
2019-05-28 18:02:17 +00:00
auto_open=False)
2019-01-25 05:42:29 +00:00
if is_last:
plot(fig, filename=str(Path('user_data').joinpath('freqtrade-plot.html')), auto_open=False)
def get_trading_env(args: Namespace):
"""
Initalize freqtrade Exchange and Strategy, split pairs recieved in parameter
:return: Strategy
"""
global _CONF
# Load the configuration
2019-05-25 18:14:31 +00:00
_CONF.update(setup_configuration(args, RunMode.BACKTEST))
print(_CONF)
2019-01-25 05:42:29 +00:00
pairs = args.pairs.split(',')
if pairs is None:
logger.critical('Parameter --pairs mandatory;. E.g --pairs ETH/BTC,XRP/BTC')
exit()
# Load the strategy
try:
strategy = StrategyResolver(_CONF).strategy
exchange = Exchange(_CONF)
except AttributeError:
logger.critical(
'Impossible to load the strategy. Please check the file "user_data/strategies/%s.py"',
args.strategy
)
exit()
2019-01-25 05:42:29 +00:00
return [strategy, exchange, pairs]
2019-05-28 18:02:17 +00:00
def get_tickers_data(strategy, exchange, pairs: List[str], timerange: TimeRange, live: bool):
2019-01-25 05:42:29 +00:00
"""
Get tickers data for each pairs on live or local, option defined in args
2019-05-28 18:02:17 +00:00
:return: dictionary of tickers. output format: {'pair': tickersdata}
2019-01-25 05:42:29 +00:00
"""
ticker_interval = strategy.ticker_interval
tickers = history.load_data(
datadir=Path(str(_CONF.get("datadir"))),
pairs=pairs,
ticker_interval=ticker_interval,
refresh_pairs=_CONF.get('refresh_pairs', False),
timerange=timerange,
exchange=Exchange(_CONF),
live=args.live,
)
2019-01-25 05:42:29 +00:00
# No ticker found, impossible to download, len mismatch
for pair, data in tickers.copy().items():
logger.debug("checking tickers data of pair: %s", pair)
logger.debug("data.empty: %s", data.empty)
logger.debug("len(data): %s", len(data))
if data.empty:
del tickers[pair]
logger.info(
'An issue occured while retreiving datas of %s pair, please retry '
'using -l option for live or --refresh-pairs-cached', pair)
return tickers
2019-01-25 05:42:29 +00:00
def generate_dataframe(strategy, tickers, pair) -> pd.DataFrame:
"""
Get tickers then Populate strategy indicators and signals, then return the full dataframe
:return: the DataFrame of a pair
"""
dataframes = strategy.tickerdata_to_dataframe(tickers)
dataframe = dataframes[pair]
dataframe = strategy.advise_buy(dataframe, {'pair': pair})
dataframe = strategy.advise_sell(dataframe, {'pair': pair})
2019-01-25 05:42:29 +00:00
return dataframe
2019-01-25 05:42:29 +00:00
def extract_trades_of_period(dataframe, trades) -> pd.DataFrame:
"""
Compare trades and backtested pair DataFrames to get trades performed on backtested period
:return: the DataFrame of a trades of period
"""
2019-05-28 18:23:16 +00:00
# TODO: Document and move to btanalysis (?)
2019-05-28 18:02:17 +00:00
trades = trades.loc[(trades['open_time'] >= dataframe.iloc[0]['date']) &
(trades['close_time'] <= dataframe.iloc[-1]['date'])]
2019-01-25 05:42:29 +00:00
return trades
2019-01-25 05:42:29 +00:00
def analyse_and_plot_pairs(args: Namespace):
"""
From arguments provided in cli:
-Initialise backtest env
-Get tickers data
-Generate Dafaframes populated with indicators and signals
-Load trades excecuted on same periods
-Generate Plotly plot objects
-Generate plot files
:return: None
"""
strategy, exchange, pairs = get_trading_env(args)
# Set timerange to use
timerange = Arguments.parse_timerange(args.timerange)
ticker_interval = strategy.ticker_interval
2019-01-25 05:42:29 +00:00
2019-05-28 18:02:17 +00:00
tickers = get_tickers_data(strategy, exchange, pairs, timerange, args.live)
2019-01-25 05:42:29 +00:00
pair_counter = 0
for pair, data in tickers.items():
pair_counter += 1
logger.info("analyse pair %s", pair)
tickers = {}
tickers[pair] = data
dataframe = generate_dataframe(strategy, tickers, pair)
2019-05-28 18:23:16 +00:00
trades = load_trades(pair, db_url=args.db_url,
exportfilename=args.exportfilename)
trades = trades.loc[trades['pair'] == pair]
2019-01-25 05:42:29 +00:00
trades = extract_trades_of_period(dataframe, trades)
fig = generate_graph(
pair=pair,
data=dataframe,
2019-05-28 05:00:57 +00:00
trades=trades,
indicators1=args.indicators1.split(","),
indicators2=args.indicators2.split(",")
2019-01-25 05:42:29 +00:00
)
is_last = (False, True)[pair_counter == len(tickers)]
generate_plot_file(fig, pair, ticker_interval, is_last)
2019-01-25 05:42:29 +00:00
logger.info('End of ploting process %s plots generated', pair_counter)
2019-05-28 18:02:17 +00:00
def plot_parse_args(args: List[str]) -> Namespace:
"""
Parse args passed to the script
:param args: Cli arguments
:return: args: Array with all arguments
"""
arguments = Arguments(args, 'Graph dataframe')
arguments.scripts_options()
arguments.parser.add_argument(
'--indicators1',
help='Set indicators from your strategy you want in the first row of the graph. Separate '
'them with a coma. E.g: ema3,ema5 (default: %(default)s)',
type=str,
default='sma,ema3,ema5',
dest='indicators1',
)
arguments.parser.add_argument(
'--indicators2',
help='Set indicators from your strategy you want in the third row of the graph. Separate '
'them with a coma. E.g: fastd,fastk (default: %(default)s)',
type=str,
default='macd,macdsignal',
dest='indicators2',
)
arguments.parser.add_argument(
'--plot-limit',
help='Specify tick limit for plotting - too high values cause huge files - '
'Default: %(default)s',
dest='plot_limit',
default=750,
type=int,
)
arguments.common_args_parser()
arguments.optimizer_shared_options(arguments.parser)
arguments.backtesting_options(arguments.parser)
return arguments.parse_args()
def main(sysargv: List[str]) -> None:
"""
This function will initiate the bot and start the trading loop.
:return: None
"""
logger.info('Starting Plot Dataframe')
2019-01-25 05:42:29 +00:00
analyse_and_plot_pairs(
plot_parse_args(sysargv)
)
2019-01-25 05:42:29 +00:00
exit()
if __name__ == '__main__':
main(sys.argv[1:])