freqtrade_origin/freqtrade/freqai/base_models/BaseTensorFlowModel.py

71 lines
2.5 KiB
Python
Raw Normal View History

2022-07-12 17:10:09 +00:00
import logging
2022-09-23 08:18:34 +00:00
from time import time
2022-07-26 14:01:54 +00:00
from typing import Any
2022-07-12 17:10:09 +00:00
from pandas import DataFrame
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.freqai_interface import IFreqaiModel
logger = logging.getLogger(__name__)
class BaseTensorFlowModel(IFreqaiModel):
"""
Base class for TensorFlow type models.
User *must* inherit from this class and set fit() and predict().
"""
def train(
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
2022-07-26 14:01:54 +00:00
) -> Any:
2022-07-12 17:10:09 +00:00
"""
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
for storing, saving, loading, and analyzing the data.
:param unfiltered_df: Full dataframe for the current training period
2022-07-24 14:54:39 +00:00
:param metadata: pair metadata from strategy.
:return:
2022-07-12 17:10:09 +00:00
:model: Trained model which can be used to inference (self.predict)
"""
2022-09-23 08:18:34 +00:00
logger.info(f"-------------------- Starting training {pair} --------------------")
start_time = time()
2022-07-12 17:10:09 +00:00
# filter the features requested by user in the configuration file and elegantly handle NaNs
features_filtered, labels_filtered = dk.filter_features(
unfiltered_df,
2022-07-12 17:10:09 +00:00
dk.training_features_list,
dk.label_list,
training_filter=True,
)
start_date = unfiltered_df["date"].iloc[0].strftime("%Y-%m-%d")
end_date = unfiltered_df["date"].iloc[-1].strftime("%Y-%m-%d")
logger.info(f"-------------------- Training on data from {start_date} to "
2022-09-23 08:18:34 +00:00
f"{end_date} --------------------")
2022-07-12 17:10:09 +00:00
# split data into train/test data.
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
2022-10-20 15:15:41 +00:00
if not self.freqai_info.get("fit_live_predictions_candles", 0) or not self.live:
dk.fit_labels()
2022-07-12 17:10:09 +00:00
# normalize all data based on train_dataset only
data_dictionary = dk.normalize_data(data_dictionary)
# optional additional data cleaning/analysis
self.data_cleaning_train(dk)
logger.info(
2022-09-23 08:18:34 +00:00
f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
2022-07-12 17:10:09 +00:00
)
2022-09-23 08:18:34 +00:00
logger.info(f"Training model on {len(data_dictionary['train_features'])} data points")
2022-07-12 17:10:09 +00:00
model = self.fit(data_dictionary, dk)
2022-07-12 17:10:09 +00:00
2022-09-23 08:18:34 +00:00
end_time = time()
logger.info(f"-------------------- Done training {pair} "
f"({end_time - start_time:.2f} secs) --------------------")
2022-07-12 17:10:09 +00:00
return model