Document dataframe parameter in custom_stoploss().

This commit is contained in:
Rokas Kupstys 2021-04-25 09:31:53 +03:00
parent 595b8735f8
commit 004550529e

View File

@ -42,33 +42,6 @@ class AwesomeStrategy(IStrategy):
***
### Storing custom information using DatetimeIndex from `dataframe`
Imagine you need to store an indicator like `ATR` or `RSI` into `custom_info`. To use this in a meaningful way, you will not only need the raw data of the indicator, but probably also need to keep the right timestamps.
```python
import talib.abstract as ta
class AwesomeStrategy(IStrategy):
# Create custom dictionary
custom_info = {}
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# using "ATR" here as example
dataframe['atr'] = ta.ATR(dataframe)
if self.dp.runmode.value in ('backtest', 'hyperopt'):
# add indicator mapped to correct DatetimeIndex to custom_info
self.custom_info[metadata['pair']] = dataframe[['date', 'atr']].set_index('date')
return dataframe
```
!!! Warning
The data is not persisted after a bot-restart (or config-reload). Also, the amount of data should be kept smallish (no DataFrames and such), otherwise the bot will start to consume a lot of memory and eventually run out of memory and crash.
!!! Note
If the data is pair-specific, make sure to use pair as one of the keys in the dictionary.
See `custom_stoploss` examples below on how to access the saved dataframe columns
## Custom sell signal
It is possible to define custom sell signals. This is very useful when we need to customize sell conditions for each individual trade.
@ -107,7 +80,8 @@ class AwesomeStrategy(IStrategy):
use_custom_stoploss = True
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
current_rate: float, current_profit: float, **kwargs) -> float:
current_rate: float, current_profit: float, dataframe: Dataframe,
**kwargs) -> float:
"""
Custom stoploss logic, returning the new distance relative to current_rate (as ratio).
e.g. returning -0.05 would create a stoploss 5% below current_rate.
@ -157,7 +131,8 @@ class AwesomeStrategy(IStrategy):
use_custom_stoploss = True
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
current_rate: float, current_profit: float, **kwargs) -> float:
current_rate: float, current_profit: float, dataframe: DataFrame,
**kwargs) -> float:
# Make sure you have the longest interval first - these conditions are evaluated from top to bottom.
if current_time - timedelta(minutes=120) > trade.open_date_utc:
@ -183,7 +158,8 @@ class AwesomeStrategy(IStrategy):
use_custom_stoploss = True
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
current_rate: float, current_profit: float, **kwargs) -> float:
current_rate: float, current_profit: float, dataframe: DataFrame,
**kwargs) -> float:
if pair in ('ETH/BTC', 'XRP/BTC'):
return -0.10
@ -209,7 +185,8 @@ class AwesomeStrategy(IStrategy):
use_custom_stoploss = True
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
current_rate: float, current_profit: float, **kwargs) -> float:
current_rate: float, current_profit: float, dataframe: DataFrame,
**kwargs) -> float:
if current_profit < 0.04:
return -1 # return a value bigger than the inital stoploss to keep using the inital stoploss
@ -249,7 +226,8 @@ class AwesomeStrategy(IStrategy):
use_custom_stoploss = True
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
current_rate: float, current_profit: float, **kwargs) -> float:
current_rate: float, current_profit: float, dataframe: DataFrame,
**kwargs) -> float:
# evaluate highest to lowest, so that highest possible stop is used
if current_profit > 0.40:
@ -266,14 +244,20 @@ class AwesomeStrategy(IStrategy):
Imagine you want to use `custom_stoploss()` to use a trailing indicator like e.g. "ATR"
See: "Storing custom information using DatetimeIndex from `dataframe`" example above) on how to store the indicator into `custom_info`
!!! Warning
only use .iat[-1] in live mode, not in backtesting/hyperopt
otherwise you will look into the future
Only use `dataframe` values up until and including `current_time` value. Reading past
`current_time` you will look into the future, which will produce incorrect backtesting results
and throw an exception in dry/live runs.
see [Common mistakes when developing strategies](strategy-customization.md#common-mistakes-when-developing-strategies) for more info.
!!! Note
DataFrame is indexed by candle date. During dry/live runs `current_time` and
`trade.open_date_utc` will not match candle dates precisely and using them as indices will throw
an error. Use `date = timeframe_to_prev_date(self.timeframe, date)` to round a date to previous
candle before using it as a `dataframe` index.
``` python
from freqtrade.exchange import timeframe_to_prev_date
from freqtrade.persistence import Trade
from freqtrade.state import RunMode
@ -284,28 +268,19 @@ class AwesomeStrategy(IStrategy):
use_custom_stoploss = True
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
current_rate: float, current_profit: float, **kwargs) -> float:
current_rate: float, current_profit: float, dataframe: DataFrame,
**kwargs) -> float:
result = 1
if self.custom_info and pair in self.custom_info and trade:
# using current_time directly (like below) will only work in backtesting.
# so check "runmode" to make sure that it's only used in backtesting/hyperopt
if self.dp and self.dp.runmode.value in ('backtest', 'hyperopt'):
relative_sl = self.custom_info[pair].loc[current_time]['atr']
# in live / dry-run, it'll be really the current time
else:
# but we can just use the last entry from an already analyzed dataframe instead
dataframe, last_updated = self.dp.get_analyzed_dataframe(pair=pair,
timeframe=self.timeframe)
# WARNING
# only use .iat[-1] in live mode, not in backtesting/hyperopt
# otherwise you will look into the future
# see: https://www.freqtrade.io/en/latest/strategy-customization/#common-mistakes-when-developing-strategies
relative_sl = dataframe['atr'].iat[-1]
if (relative_sl is not None):
# Using current_time directly would only work in backtesting. Live/dry runs need time to
# be rounded to previous candle to be used as dataframe index. Rounding must also be
# applied to `trade.open_date(_utc)` if it is used for `dataframe` indexing.
current_time = timeframe_to_prev_date(self.timeframe, current_time)
current_row = dataframe.loc[current_time]
if 'atr' in current_row:
# new stoploss relative to current_rate
new_stoploss = (current_rate-relative_sl)/current_rate
new_stoploss = (current_rate - current_row['atr']) / current_rate
# turn into relative negative offset required by `custom_stoploss` return implementation
result = new_stoploss - 1