mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 10:21:59 +00:00
Extract signals generation from backtesting class
This commit is contained in:
parent
6e395ad7c9
commit
023c155a25
|
@ -9,7 +9,6 @@ from copy import deepcopy
|
|||
from datetime import datetime, timedelta, timezone
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
import pandas as pd
|
||||
from numpy import nan
|
||||
from pandas import DataFrame
|
||||
|
||||
|
@ -28,7 +27,9 @@ from freqtrade.exchange import (amount_to_contract_precision, price_to_precision
|
|||
from freqtrade.mixins import LoggingMixin
|
||||
from freqtrade.optimize.backtest_caching import get_strategy_run_id
|
||||
from freqtrade.optimize.bt_progress import BTProgress
|
||||
from freqtrade.optimize.optimize_reports import (generate_backtest_stats, show_backtest_results,
|
||||
from freqtrade.optimize.optimize_reports import (generate_backtest_stats, generate_rejected_signals,
|
||||
generate_trade_signal_candles,
|
||||
show_backtest_results,
|
||||
store_backtest_analysis_results,
|
||||
store_backtest_stats)
|
||||
from freqtrade.persistence import LocalTrade, Order, PairLocks, Trade
|
||||
|
@ -1296,53 +1297,13 @@ class Backtesting:
|
|||
|
||||
if (self.config.get('export', 'none') == 'signals' and
|
||||
self.dataprovider.runmode == RunMode.BACKTEST):
|
||||
self.processed_dfs[strategy_name] = self._generate_trade_signal_candles(
|
||||
self.processed_dfs[strategy_name] = generate_trade_signal_candles(
|
||||
preprocessed_tmp, results)
|
||||
self.rejected_df[strategy_name] = self._generate_rejected_signals(
|
||||
self.rejected_df[strategy_name] = generate_rejected_signals(
|
||||
preprocessed_tmp, self.rejected_dict)
|
||||
|
||||
return min_date, max_date
|
||||
|
||||
def _generate_trade_signal_candles(self, preprocessed_df: Dict[str, pd.DataFrame],
|
||||
bt_results: Dict[str, Any]) -> pd.DataFrame:
|
||||
signal_candles_only = {}
|
||||
for pair in preprocessed_df.keys():
|
||||
signal_candles_only_df = DataFrame()
|
||||
|
||||
pairdf = preprocessed_df[pair]
|
||||
resdf = bt_results['results']
|
||||
pairresults = resdf.loc[(resdf["pair"] == pair)]
|
||||
|
||||
if pairdf.shape[0] > 0:
|
||||
for t, v in pairresults.open_date.items():
|
||||
allinds = pairdf.loc[(pairdf['date'] < v)]
|
||||
signal_inds = allinds.iloc[[-1]]
|
||||
signal_candles_only_df = pd.concat([
|
||||
signal_candles_only_df.infer_objects(),
|
||||
signal_inds.infer_objects()])
|
||||
|
||||
signal_candles_only[pair] = signal_candles_only_df
|
||||
return signal_candles_only
|
||||
|
||||
def _generate_rejected_signals(self, preprocessed_df: Dict[str, DataFrame],
|
||||
rejected_dict: Dict[str, DataFrame]) -> Dict[str, DataFrame]:
|
||||
rejected_candles_only = {}
|
||||
for pair, signals in rejected_dict.items():
|
||||
rejected_signals_only_df = DataFrame()
|
||||
pairdf = preprocessed_df[pair]
|
||||
|
||||
for t in signals:
|
||||
data_df_row = pairdf.loc[(pairdf['date'] == t[0])].copy()
|
||||
data_df_row['pair'] = pair
|
||||
data_df_row['enter_tag'] = t[1]
|
||||
|
||||
rejected_signals_only_df = pd.concat([
|
||||
rejected_signals_only_df.infer_objects(),
|
||||
data_df_row.infer_objects()])
|
||||
|
||||
rejected_candles_only[pair] = rejected_signals_only_df
|
||||
return rejected_candles_only
|
||||
|
||||
def _get_min_cached_backtest_date(self):
|
||||
min_backtest_date = None
|
||||
backtest_cache_age = self.config.get('backtest_cache', constants.BACKTEST_CACHE_DEFAULT)
|
||||
|
|
|
@ -4,7 +4,7 @@ from datetime import datetime, timedelta, timezone
|
|||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Union
|
||||
|
||||
from pandas import DataFrame, to_datetime
|
||||
from pandas import DataFrame, concat, to_datetime
|
||||
from tabulate import tabulate
|
||||
|
||||
from freqtrade.constants import (BACKTEST_BREAKDOWNS, DATETIME_PRINT_FORMAT, LAST_BT_RESULT_FN,
|
||||
|
@ -78,6 +78,48 @@ def store_backtest_analysis_results(
|
|||
_store_backtest_analysis_data(recordfilename, trades, dtappendix, "rejected")
|
||||
|
||||
|
||||
def generate_trade_signal_candles(preprocessed_df: Dict[str, DataFrame],
|
||||
bt_results: Dict[str, Any]) -> DataFrame:
|
||||
signal_candles_only = {}
|
||||
for pair in preprocessed_df.keys():
|
||||
signal_candles_only_df = DataFrame()
|
||||
|
||||
pairdf = preprocessed_df[pair]
|
||||
resdf = bt_results['results']
|
||||
pairresults = resdf.loc[(resdf["pair"] == pair)]
|
||||
|
||||
if pairdf.shape[0] > 0:
|
||||
for t, v in pairresults.open_date.items():
|
||||
allinds = pairdf.loc[(pairdf['date'] < v)]
|
||||
signal_inds = allinds.iloc[[-1]]
|
||||
signal_candles_only_df = concat([
|
||||
signal_candles_only_df.infer_objects(),
|
||||
signal_inds.infer_objects()])
|
||||
|
||||
signal_candles_only[pair] = signal_candles_only_df
|
||||
return signal_candles_only
|
||||
|
||||
|
||||
def generate_rejected_signals(preprocessed_df: Dict[str, DataFrame],
|
||||
rejected_dict: Dict[str, DataFrame]) -> Dict[str, DataFrame]:
|
||||
rejected_candles_only = {}
|
||||
for pair, signals in rejected_dict.items():
|
||||
rejected_signals_only_df = DataFrame()
|
||||
pairdf = preprocessed_df[pair]
|
||||
|
||||
for t in signals:
|
||||
data_df_row = pairdf.loc[(pairdf['date'] == t[0])].copy()
|
||||
data_df_row['pair'] = pair
|
||||
data_df_row['enter_tag'] = t[1]
|
||||
|
||||
rejected_signals_only_df = concat([
|
||||
rejected_signals_only_df.infer_objects(),
|
||||
data_df_row.infer_objects()])
|
||||
|
||||
rejected_candles_only[pair] = rejected_signals_only_df
|
||||
return rejected_candles_only
|
||||
|
||||
|
||||
def _get_line_floatfmt(stake_currency: str) -> List[str]:
|
||||
"""
|
||||
Generate floatformat (goes in line with _generate_result_line())
|
||||
|
|
Loading…
Reference in New Issue
Block a user