mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 10:21:59 +00:00
Make check constant pred labels agnostic
This commit is contained in:
parent
20fc521771
commit
033c5bd441
|
@ -71,6 +71,7 @@ class FreqaiDataKitchen:
|
|||
self.data_path = Path()
|
||||
self.label_list: List = []
|
||||
self.training_features_list: List = []
|
||||
self.constant_features_list: List = []
|
||||
self.model_filename: str = ""
|
||||
self.backtesting_results_path = Path()
|
||||
self.backtest_predictions_folder: str = "backtesting_predictions"
|
||||
|
@ -206,15 +207,14 @@ class FreqaiDataKitchen:
|
|||
|
||||
drop_index = pd.isnull(filtered_df).any(axis=1) # get the rows that have NaNs,
|
||||
drop_index = drop_index.replace(True, 1).replace(False, 0) # pep8 requirement.
|
||||
ft_params = self.freqai_config["feature_parameters"]
|
||||
if (training_filter):
|
||||
if not ft_params.get(
|
||||
"principal_component_analysis", False
|
||||
):
|
||||
const_cols = list((filtered_df.nunique() == 1).loc[lambda x: x].index)
|
||||
if const_cols:
|
||||
filtered_df = filtered_df.filter(filtered_df.columns.difference(const_cols))
|
||||
logger.warning(f"Removed features {const_cols} with constant values.")
|
||||
const_cols = list((filtered_df.nunique() == 1).loc[lambda x: x].index)
|
||||
if const_cols:
|
||||
filtered_df = filtered_df.filter(filtered_df.columns.difference(const_cols))
|
||||
self.constant_features_list = const_cols
|
||||
logger.warning(f"Removed features {const_cols} with constant values.")
|
||||
else:
|
||||
self.constant_features_list = []
|
||||
# we don't care about total row number (total no. datapoints) in training, we only care
|
||||
# about removing any row with NaNs
|
||||
# if labels has multiple columns (user wants to train multiple modelEs), we detect here
|
||||
|
@ -245,9 +245,7 @@ class FreqaiDataKitchen:
|
|||
self.data["filter_drop_index_training"] = drop_index
|
||||
|
||||
else:
|
||||
if not ft_params.get(
|
||||
"principal_component_analysis", False
|
||||
):
|
||||
if len(self.constant_features_list):
|
||||
filtered_df = self.check_pred_labels(filtered_df)
|
||||
# we are backtesting so we need to preserve row number to send back to strategy,
|
||||
# so now we use do_predict to avoid any prediction based on a NaN
|
||||
|
@ -474,15 +472,14 @@ class FreqaiDataKitchen:
|
|||
:params:
|
||||
:df_predictions: incoming predictions
|
||||
"""
|
||||
train_labels = self.data_dictionary["train_features"].columns
|
||||
pred_labels = df_predictions.columns
|
||||
num_diffs = len(pred_labels.difference(train_labels))
|
||||
if num_diffs != 0:
|
||||
df_predictions = df_predictions[train_labels]
|
||||
logger.warning(
|
||||
f"Removed {num_diffs} features from prediction features, "
|
||||
f"these were likely considered constant values during most recent training."
|
||||
)
|
||||
constant_labels = self.constant_features_list
|
||||
df_predictions = df_predictions.filter(
|
||||
df_predictions.columns.difference(constant_labels)
|
||||
)
|
||||
logger.warning(
|
||||
f"Removed {len(constant_labels)} features from prediction features, "
|
||||
f"these were considered constant values during most recent training."
|
||||
)
|
||||
|
||||
return df_predictions
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user