diff --git a/freqtrade/configuration/config_schema.py b/freqtrade/configuration/config_schema.py index e0ed66c51..94e19bdbc 100644 --- a/freqtrade/configuration/config_schema.py +++ b/freqtrade/configuration/config_schema.py @@ -986,24 +986,98 @@ CONF_SCHEMA = { "feature_parameters": { "type": "object", "properties": { - "include_corr_pairlist": {"type": "array"}, - "include_timeframes": {"type": "array"}, - "label_period_candles": {"type": "integer"}, - "include_shifted_candles": {"type": "integer", "default": 0}, - "DI_threshold": {"type": "number", "default": 0}, - "weight_factor": {"type": "number", "default": 0}, - "principal_component_analysis": {"type": "boolean", "default": False}, - "use_SVM_to_remove_outliers": {"type": "boolean", "default": False}, - "plot_feature_importances": {"type": "integer", "default": 0}, + "include_corr_pairlist": { + "description": "List of correlated pairs to include in the features.", + "type": "array", + }, + "include_timeframes": { + "description": ( + "A list of timeframes that all indicators in " + "`feature_engineering_expand_*()` will be created for." + ), + "type": "array", + }, + "label_period_candles": { + "description": ( + "Number of candles into the future to use for labeling the period." + "This can be used in `set_freqai_targets()`." + ), + "type": "integer", + }, + "include_shifted_candles": { + "description": ( + "Add features from previous candles to subsequent candles with " + "the intent of adding historical information." + ), + "type": "integer", + "default": 0, + }, + "DI_threshold": { + "description": ( + "Activates the use of the Dissimilarity Index for " + "outlier detection when set to > 0." + ), + "type": "number", + "default": 0, + }, + "weight_factor": { + "description": ( + "Weight training data points according to their recency." + ), + "type": "number", + "default": 0, + }, + "principal_component_analysis": { + "description": ( + "Automatically reduce the dimensionality of the data set using " + "Principal Component Analysis" + ), + "type": "boolean", + "default": False, + }, + "use_SVM_to_remove_outliers": { + "description": "Use SVM to remove outliers from the features.", + "type": "boolean", + "default": False, + }, + "plot_feature_importances": { + "description": "Create feature importance plots for each model.", + "type": "integer", + "default": 0, + }, "svm_params": { + "description": ( + "All parameters available in Sklearn's `SGDOneClassSVM()`." + ), "type": "object", "properties": { - "shuffle": {"type": "boolean", "default": False}, - "nu": {"type": "number", "default": 0.1}, + "shuffle": { + "description": "Whether to shuffle data before applying SVM.", + "type": "boolean", + "default": False, + }, + "nu": { + "type": "number", + "default": 0.1, + }, }, }, - "shuffle_after_split": {"type": "boolean", "default": False}, - "buffer_train_data_candles": {"type": "integer", "default": 0}, + "shuffle_after_split": { + "description": ( + "Split the data into train and test sets, and then shuffle " + "both sets individually." + ), + "type": "boolean", + "default": False, + }, + "buffer_train_data_candles": { + "description": ( + "Cut `buffer_train_data_candles` off the beginning and end of the " + "training data *after* the indicators were populated." + ), + "type": "integer", + "default": 0, + }, }, "required": [ "include_timeframes", @@ -1011,6 +1085,9 @@ CONF_SCHEMA = { ], }, "data_split_parameters": { + "descriptions": ( + "Additional parameters for scikit-learn's test_train_split() function." + ), "type": "object", "properties": { "test_size": {"type": "number"}, @@ -1018,7 +1095,13 @@ CONF_SCHEMA = { "shuffle": {"type": "boolean", "default": False}, }, }, - "model_training_parameters": {"type": "object"}, + "model_training_parameters": { + "description": ( + "Flexible dictionary that includes all parameters available by " + "the selected model library. " + ), + "type": "object", + }, "rl_config": { "type": "object", "properties": {