diff --git a/freqtrade/optimize/hyperopt_loss/hyperopt_loss_multi_metric.py b/freqtrade/optimize/hyperopt_loss/hyperopt_loss_multi_metric.py index 62f7e90d5..de8d117d6 100644 --- a/freqtrade/optimize/hyperopt_loss/hyperopt_loss_multi_metric.py +++ b/freqtrade/optimize/hyperopt_loss/hyperopt_loss_multi_metric.py @@ -30,9 +30,6 @@ TARGET_TRADE_AMOUNT variable sets the minimum number of trades required to avoid If the trade amount falls below this threshold, the penalty is applied. """ -from datetime import datetime -from typing import Any - import numpy as np from pandas import DataFrame @@ -60,11 +57,7 @@ class MultiMetricHyperOptLoss(IHyperOptLoss): def hyperopt_loss_function( results: DataFrame, trade_count: int, - min_date: datetime, - max_date: datetime, config: Config, - processed: dict[str, DataFrame], - backtest_stats: dict[str, Any], **kwargs, ) -> float: total_profit = results["profit_abs"].sum()