using named tuples for keeping pairs data

This commit is contained in:
misagh 2018-11-04 18:11:58 +01:00
parent d7821acbf0
commit 14bfd4b7ee
2 changed files with 64 additions and 66 deletions

View File

@ -13,6 +13,7 @@ from freqtrade.arguments import Arguments
from freqtrade.arguments import TimeRange
from freqtrade.strategy.interface import SellType
from freqtrade.strategy.resolver import IStrategy, StrategyResolver
from collections import namedtuple
import sys
logger = logging.getLogger(__name__)
@ -21,16 +22,11 @@ logger = logging.getLogger(__name__)
class Edge():
config: Dict = {}
_last_updated: int # Timestamp of pairs last updated time
_cached_pairs: list = [] # Keeps an array of
# [pair, stoploss, winrate, risk reward ratio, required risk reward, expectancy]
_total_capital: float
_allowed_risk: float
_since_number_of_days: int
_timerange: TimeRange
_cached_pairs: Dict[str, Any] = {} # Keeps a list of pairs
def __init__(self, config: Dict[str, Any], exchange=None) -> None:
# Increasing recursive limit as with need it for large datasets
sys.setrecursionlimit(10000)
self.config = config
self.exchange = exchange
@ -42,13 +38,18 @@ class Edge():
self.advise_buy = self.strategy.advise_buy
self.edge_config = self.config.get('edge', {})
self._cached_pairs: list = []
self._total_capital = self.edge_config.get('total_capital_in_stake_currency')
self._allowed_risk = self.edge_config.get('allowed_risk')
self._since_number_of_days = self.edge_config.get('calculate_since_number_of_days', 14)
self._last_updated = 0
self._timerange = Arguments.parse_timerange("%s-" % arrow.now().shift(
# pair info data type
self._pair_info = namedtuple(
'pair_info', 'stoploss, winrate, risk_reward_ratio, required_risk_reward, expectancy')
self._cached_pairs: Dict[str, Any] = {} # Keeps a list of pairs
self._total_capital: float = self.edge_config.get('total_capital_in_stake_currency')
self._allowed_risk: float = self.edge_config.get('allowed_risk')
self._since_number_of_days: int = self.edge_config.get('calculate_since_number_of_days', 14)
self._last_updated: int = 0 # Timestamp of pairs last updated time
self._timerange: TimeRange = Arguments.parse_timerange("%s-" % arrow.now().shift(
days=-1 * self._since_number_of_days).format('YYYYMMDD'))
self.fee = self.exchange.get_fee()
@ -132,34 +133,24 @@ class Edge():
return True
def stake_amount(self, pair: str) -> float:
info = [x for x in self._cached_pairs if x[0] == pair][0]
stoploss = info[1]
stoploss = self._cached_pairs[pair].stoploss
allowed_capital_at_risk = round(self._total_capital * self._allowed_risk, 5)
position_size = abs(round((allowed_capital_at_risk / stoploss), 5))
return position_size
def stoploss(self, pair: str) -> float:
info = [x for x in self._cached_pairs if x[0] == pair][0]
return info[1]
return self._cached_pairs[pair].stoploss
def filter(self, pairs) -> list:
# Filtering pairs acccording to the expectancy
filtered_expectancy: list = []
# [pair, stoploss, winrate, risk reward ratio, required risk reward, expectancy]
filtered_expectancy = [
x[0] for x in self._cached_pairs if (
(x[5] > float(
self.edge_config.get(
'minimum_expectancy',
0.2))) & (
x[2] > float(
self.edge_config.get(
'minimum_winrate',
0.60))))]
final = []
for pair, info in self._cached_pairs.items():
if info.expectancy > float(self.edge_config.get('minimum_expectancy', 0.2)) and \
info.winrate > float(self.edge_config.get('minimum_winrate', 0.60)) and \
pair in pairs:
final.append(pair)
# Only return pairs which are included in "pairs" argument list
final = [x for x in filtered_expectancy if x in pairs]
if final:
logger.info(
'Edge validated only %s',
@ -220,7 +211,7 @@ class Edge():
return result
def _process_expectancy(self, results: DataFrame) -> list:
def _process_expectancy(self, results: DataFrame) -> Dict[str, Any]:
"""
This calculates WinRate, Required Risk Reward, Risk Reward and Expectancy of all pairs
The calulation will be done per pair and per strategy.
@ -246,7 +237,7 @@ class Edge():
#######################################################################
if results.empty:
return []
return {}
groupby_aggregator = {
'profit_abs': [
@ -286,12 +277,17 @@ class Edge():
df = df.sort_values(by=['expectancy', 'stoploss'], ascending=False).groupby(
'pair').first().sort_values(by=['expectancy'], ascending=False).reset_index()
# dropping unecessary columns
df.drop(columns=['nb_loss_trades', 'nb_win_trades', 'average_win', 'average_loss',
'profit_sum', 'loss_sum', 'avg_trade_duration', 'nb_trades'], inplace=True)
final = {}
for x in df.itertuples():
final[x.pair] = self._pair_info(
x.stoploss,
x.winrate,
x.risk_reward_ratio,
x.required_risk_reward,
x.expectancy)
# Returning an array of pairs in order of "expectancy"
return df.values
# Returning a list of pairs in order of "expectancy"
return final
def _find_trades_for_stoploss_range(self, ticker_data, pair, stoploss_range):
buy_column = ticker_data['buy'].values

View File

@ -2,6 +2,7 @@ from freqtrade.tests.conftest import get_patched_exchange
from freqtrade.edge import Edge
from pandas import DataFrame, to_datetime
from freqtrade.strategy.interface import SellType
from collections import namedtuple
import arrow
import numpy as np
import math
@ -20,17 +21,19 @@ from unittest.mock import MagicMock
ticker_start_time = arrow.get(2018, 10, 3)
ticker_interval_in_minute = 60
_ohlc = {'date': 0, 'buy': 1, 'open': 2, 'high': 3, 'low': 4, 'close': 5, 'sell': 6, 'volume': 7}
_pair_info = namedtuple(
'pair_info', 'stoploss, winrate, risk_reward_ratio, required_risk_reward, expectancy')
def test_filter(mocker, default_conf):
exchange = get_patched_exchange(mocker, default_conf)
edge = Edge(default_conf, exchange)
mocker.patch('freqtrade.edge.Edge._cached_pairs', mocker.PropertyMock(
return_value=[
['E/F', -0.01, 0.66, 3.71, 0.50, 1.71],
['C/D', -0.01, 0.66, 3.71, 0.50, 1.71],
['N/O', -0.01, 0.66, 3.71, 0.50, 1.71]
]
return_value={
'E/F': _pair_info(-0.01, 0.66, 3.71, 0.50, 1.71),
'C/D': _pair_info(-0.01, 0.66, 3.71, 0.50, 1.71),
'N/O': _pair_info(-0.01, 0.66, 3.71, 0.50, 1.71)
}
))
pairs = ['A/B', 'C/D', 'E/F', 'G/H']
@ -41,11 +44,11 @@ def test_stoploss(mocker, default_conf):
exchange = get_patched_exchange(mocker, default_conf)
edge = Edge(default_conf, exchange)
mocker.patch('freqtrade.edge.Edge._cached_pairs', mocker.PropertyMock(
return_value=[
['E/F', -0.01, 0.66, 3.71, 0.50, 1.71],
['C/D', -0.01, 0.66, 3.71, 0.50, 1.71],
['N/O', -0.01, 0.66, 3.71, 0.50, 1.71]
]
return_value={
'E/F': _pair_info(-0.01, 0.66, 3.71, 0.50, 1.71),
'C/D': _pair_info(-0.01, 0.66, 3.71, 0.50, 1.71),
'N/O': _pair_info(-0.01, 0.66, 3.71, 0.50, 1.71)
}
))
assert edge.stoploss('E/F') == -0.01
@ -61,7 +64,7 @@ def _validate_ohlc(buy_ohlc_sell_matrice):
def _build_dataframe(buy_ohlc_sell_matrice):
_validate_ohlc(buy_ohlc_sell_matrice)
tickers = []
tickers= []
for ohlc in buy_ohlc_sell_matrice:
ticker = {
'date': ticker_start_time.shift(
@ -79,9 +82,9 @@ def _build_dataframe(buy_ohlc_sell_matrice):
frame = DataFrame(tickers)
frame['date'] = to_datetime(frame['date'],
unit='ms',
utc=True,
infer_datetime_format=True)
unit = 'ms',
utc = True,
infer_datetime_format = True)
return frame
@ -92,17 +95,17 @@ def _time_on_candle(number):
def test_edge_heartbeat_calculate(mocker, default_conf):
exchange = get_patched_exchange(mocker, default_conf)
edge = Edge(default_conf, exchange)
heartbeat = default_conf['edge']['process_throttle_secs']
exchange=get_patched_exchange(mocker, default_conf)
edge=Edge(default_conf, exchange)
heartbeat=default_conf['edge']['process_throttle_secs']
# should not recalculate if heartbeat not reached
edge._last_updated = arrow.utcnow().timestamp - heartbeat + 1
edge._last_updated=arrow.utcnow().timestamp - heartbeat + 1
assert edge.calculate() is False
def mocked_load_data(datadir, pairs=[], ticker_interval='0m', refresh_pairs=False,
def mocked_load_data(datadir, pairs = [], ticker_interval = '0m', refresh_pairs = False,
timerange=None, exchange=None):
hz = 0.1
base = 0.001
@ -202,13 +205,12 @@ def test_process_expectancy(mocker, default_conf):
final = edge._process_expectancy(trades_df)
assert len(final) == 1
assert final[0][0] == 'TEST/BTC'
assert final[0][1] == -0.9
assert round(final[0][2], 10) == 0.3333333333
assert round(final[0][3], 10) == 306.5384615384
assert round(final[0][4], 10) == 2.0
assert round(final[0][5], 10) == 101.5128205128
assert 'TEST/BTC' in final
assert final['TEST/BTC'].stoploss == -0.9
assert round(final['TEST/BTC'].winrate, 10) == 0.3333333333
assert round(final['TEST/BTC'].risk_reward_ratio, 10) == 306.5384615384
assert round(final['TEST/BTC'].required_risk_reward, 10) == 2.0
assert round(final['TEST/BTC'].expectancy, 10) == 101.5128205128
# 1) Open trade should be removed from the end
def test_case_1(mocker, default_conf):