Merge pull request #1957 from freqtrade/new_release

New release - 2019.6
This commit is contained in:
Matthias 2019-06-26 06:05:43 +02:00 committed by GitHub
commit 21f6493b02
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
103 changed files with 5347 additions and 2052 deletions

View File

@ -11,7 +11,10 @@ update: all
# allowed: True, False
pin: True
schedule: "every day"
# update schedule
# default: empty
# allowed: "every day", "every week", ..
schedule: "every week"
search: False
@ -22,7 +25,7 @@ requirements:
- requirements.txt
- requirements-dev.txt
- requirements-plot.txt
- requirements-pi.txt
- requirements-common.txt
# configure the branch prefix the bot is using

View File

@ -11,7 +11,7 @@ Few pointers for contributions:
- Create your PR against the `develop` branch, not `master`.
- New features need to contain unit tests and must be PEP8 conformant (max-line-length = 100).
If you are unsure, discuss the feature on our [Slack](https://join.slack.com/t/highfrequencybot/shared_invite/enQtMjQ5NTM0OTYzMzY3LWMxYzE3M2MxNDdjMGM3ZTYwNzFjMGIwZGRjNTc3ZGU3MGE3NzdmZGMwNmU3NDM5ZTNmM2Y3NjRiNzk4NmM4OGE)
If you are unsure, discuss the feature on our [Slack](https://join.slack.com/t/highfrequencybot/shared_invite/enQtNjU5ODcwNjI1MDU3LWEyODBiNzkzNzcyNzU0MWYyYzE5NjIyOTQxMzBmMGUxOTIzM2YyN2Y4NWY1YTEwZDgwYTRmMzE2NmM5ZmY2MTg)
or in a [issue](https://github.com/freqtrade/freqtrade/issues) before a PR.
## Getting started

View File

@ -16,7 +16,7 @@ RUN cd /tmp && /tmp/install_ta-lib.sh && rm -r /tmp/*ta-lib*
ENV LD_LIBRARY_PATH /usr/local/lib
# Install dependencies
COPY requirements.txt /freqtrade/
COPY requirements.txt requirements-common.txt /freqtrade/
RUN pip install numpy --no-cache-dir \
&& pip install -r requirements.txt --no-cache-dir

View File

@ -27,9 +27,9 @@ RUN wget https://github.com/jjhelmus/berryconda/releases/download/v2.0.0/Berryco
&& rm Berryconda3-2.0.0-Linux-armv7l.sh
# Install dependencies
COPY requirements-pi.txt /freqtrade/
COPY requirements-common.txt /freqtrade/
RUN ~/berryconda3/bin/conda install -y numpy pandas scipy \
&& ~/berryconda3/bin/pip install -r requirements-pi.txt --no-cache-dir
&& ~/berryconda3/bin/pip install -r requirements-common.txt --no-cache-dir
# Install and execute
COPY . /freqtrade/

View File

@ -3,4 +3,4 @@ FROM freqtradeorg/freqtrade:develop
RUN apt-get update \
&& apt-get -y install git \
&& apt-get clean \
&& pip install git+https://github.com/berlinguyinca/technical
&& pip install git+https://github.com/freqtrade/technical

View File

@ -129,7 +129,6 @@ The project is currently setup in two main branches:
- `master` - This branch contains the latest stable release. The bot 'should' be stable on this branch, and is generally well tested.
- `feat/*` - These are feature branches, which are being worked on heavily. Please don't use these unless you want to test a specific feature.
## A note on Binance
For Binance, please add `"BNB/<STAKE>"` to your blacklist to avoid issues.
@ -142,7 +141,7 @@ Accounts having BNB accounts use this to pay for fees - if your first trade happ
For any questions not covered by the documentation or for further
information about the bot, we encourage you to join our slack channel.
- [Click here to join Slack channel](https://join.slack.com/t/highfrequencybot/shared_invite/enQtMjQ5NTM0OTYzMzY3LWMxYzE3M2MxNDdjMGM3ZTYwNzFjMGIwZGRjNTc3ZGU3MGE3NzdmZGMwNmU3NDM5ZTNmM2Y3NjRiNzk4NmM4OGE).
- [Click here to join Slack channel](https://join.slack.com/t/highfrequencybot/shared_invite/enQtNjU5ODcwNjI1MDU3LWEyODBiNzkzNzcyNzU0MWYyYzE5NjIyOTQxMzBmMGUxOTIzM2YyN2Y4NWY1YTEwZDgwYTRmMzE2NmM5ZmY2MTg).
### [Bugs / Issues](https://github.com/freqtrade/freqtrade/issues?q=is%3Aissue)
@ -173,7 +172,7 @@ to understand the requirements before sending your pull-requests.
Coding is not a neccessity to contribute - maybe start with improving our documentation?
Issues labeled [good first issue](https://github.com/freqtrade/freqtrade/labels/good%20first%20issue) can be good first contributions, and will help get you familiar with the codebase.
**Note** before starting any major new feature work, *please open an issue describing what you are planning to do* or talk to us on [Slack](https://join.slack.com/t/highfrequencybot/shared_invite/enQtMjQ5NTM0OTYzMzY3LWMxYzE3M2MxNDdjMGM3ZTYwNzFjMGIwZGRjNTc3ZGU3MGE3NzdmZGMwNmU3NDM5ZTNmM2Y3NjRiNzk4NmM4OGE). This will ensure that interested parties can give valuable feedback on the feature, and let others know that you are working on it.
**Note** before starting any major new feature work, *please open an issue describing what you are planning to do* or talk to us on [Slack](https://join.slack.com/t/highfrequencybot/shared_invite/enQtNjU5ODcwNjI1MDU3LWEyODBiNzkzNzcyNzU0MWYyYzE5NjIyOTQxMzBmMGUxOTIzM2YyN2Y4NWY1YTEwZDgwYTRmMzE2NmM5ZmY2MTg). This will ensure that interested parties can give valuable feedback on the feature, and let others know that you are working on it.
**Important:** Always create your PR against the `develop` branch, not `master`.

View File

@ -1,7 +1,13 @@
#!/usr/bin/env python3
import sys
import warnings
from freqtrade.main import main, set_loggers
set_loggers()
warnings.warn(
"Deprecated - To continue to run the bot like this, please run `pip install -e .` again.",
DeprecationWarning)
main(sys.argv[1:])

View File

@ -11,8 +11,8 @@
"sell": 30
},
"bid_strategy": {
"ask_last_balance": 0.0,
"use_order_book": false,
"ask_last_balance": 0.0,
"order_book_top": 1,
"check_depth_of_market": {
"enabled": false,

View File

@ -22,8 +22,8 @@
"sell": 30
},
"bid_strategy": {
"ask_last_balance": 0.0,
"use_order_book": false,
"ask_last_balance": 0.0,
"order_book_top": 1,
"check_depth_of_market": {
"enabled": false,
@ -56,8 +56,10 @@
},
"exchange": {
"name": "bittrex",
"sandbox": false,
"key": "your_exchange_key",
"secret": "your_exchange_secret",
"password": "",
"ccxt_config": {"enableRateLimit": true},
"ccxt_async_config": {
"enableRateLimit": false,
@ -107,6 +109,13 @@
"token": "your_telegram_token",
"chat_id": "your_telegram_chat_id"
},
"api_server": {
"enabled": false,
"listen_ip_address": "127.0.0.1",
"listen_port": 8080,
"username": "freqtrader",
"password": "SuperSecurePassword"
},
"db_url": "sqlite:///tradesv3.sqlite",
"initial_state": "running",
"forcebuy_enable": false,

View File

@ -5,15 +5,14 @@
"fiat_display_currency": "EUR",
"ticker_interval" : "5m",
"dry_run": true,
"db_url": "sqlite:///tradesv3.dryrun.sqlite",
"trailing_stop": false,
"unfilledtimeout": {
"buy": 10,
"sell": 30
},
"bid_strategy": {
"ask_last_balance": 0.0,
"use_order_book": false,
"ask_last_balance": 0.0,
"order_book_top": 1,
"check_depth_of_market": {
"enabled": false,
@ -60,8 +59,8 @@
},
"telegram": {
"enabled": false,
"token": "",
"chat_id": ""
"token": "your_telegram_token",
"chat_id": "your_telegram_chat_id"
},
"initial_state": "running",
"forcebuy_enable": false,

View File

@ -123,11 +123,12 @@ python scripts/download_backtest_data.py --exchange binance
This will download ticker data for all the currency pairs you defined in `pairs.json`.
- To use a different folder than the exchange specific default, use `--export user_data/data/some_directory`.
- To use a different folder than the exchange specific default, use `--datadir user_data/data/some_directory`.
- To change the exchange used to download the tickers, use `--exchange`. Default is `bittrex`.
- To use `pairs.json` from some other folder, use `--pairs-file some_other_dir/pairs.json`.
- To download ticker data for only 10 days, use `--days 10`.
- Use `--timeframes` to specify which tickers to download. Default is `--timeframes 1m 5m` which will download 1-minute and 5-minute tickers.
- To use exchange, timeframe and list of pairs as defined in your configuration file, use the `-c/--config` option. With this, the script uses the whitelist defined in the config as the list of currency pairs to download data for and does not require the pairs.json file. You can combine `-c/--config` with other options.
For help about backtesting usage, please refer to [Backtesting commands](#backtesting-commands).
@ -220,24 +221,8 @@ strategies, your configuration, and the crypto-currency you have set up.
### Further backtest-result analysis
To further analyze your backtest results, you can [export the trades](#exporting-trades-to-file).
You can then load the trades to perform further analysis.
You can then load the trades to perform further analysis as shown in our [data analysis](data-analysis.md#backtesting) backtesting section.
A good way for this is using Jupyter (notebook or lab) - which provides an interactive environment to analyze the data.
Freqtrade provides an easy to load the backtest results, which is `load_backtest_data` - and takes a path to the backtest-results file.
``` python
from freqtrade.data.btanalysis import load_backtest_data
df = load_backtest_data("user_data/backtest-result.json")
# Show value-counts per pair
df.groupby("pair")["sell_reason"].value_counts()
```
This will allow you to drill deeper into your backtest results, and perform analysis which would make the regular backtest-output unreadable.
If you have some ideas for interesting / helpful backtest data analysis ideas, please submit a PR so the community can benefit from it.
## Backtesting multiple strategies

View File

@ -26,7 +26,8 @@ optional arguments:
--version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default: None). Multiple
--config options may be used.
--config options may be used. Can be set to '-' to
read config from stdin.
-d PATH, --datadir PATH
Path to backtest data.
-s NAME, --strategy NAME
@ -103,7 +104,7 @@ If the bot does not find your strategy file, it will display in an error
message the reason (File not found, or errors in your code).
Learn more about strategy file in
[optimize your bot](bot-optimization.md).
[Strategy Customization](strategy-customization.md).
### How to use **--strategy-path**?
@ -146,9 +147,11 @@ Backtesting also uses the config specified via `-c/--config`.
```
usage: freqtrade backtesting [-h] [-i TICKER_INTERVAL] [--timerange TIMERANGE]
[--eps] [--dmmp] [-l] [-r]
[--strategy-list STRATEGY_LIST [STRATEGY_LIST ...]]
[--export EXPORT] [--export-filename PATH]
[--max_open_trades MAX_OPEN_TRADES]
[--stake_amount STAKE_AMOUNT] [-r] [--eps] [--dmmp]
[-l]
[--strategy-list STRATEGY_LIST [STRATEGY_LIST ...]]
[--export EXPORT] [--export-filename PATH]
optional arguments:
-h, --help show this help message and exit
@ -156,6 +159,14 @@ optional arguments:
Specify ticker interval (1m, 5m, 30m, 1h, 1d).
--timerange TIMERANGE
Specify what timerange of data to use.
--max_open_trades MAX_OPEN_TRADES
Specify max_open_trades to use.
--stake_amount STAKE_AMOUNT
Specify stake_amount.
-r, --refresh-pairs-cached
Refresh the pairs files in tests/testdata with the
latest data from the exchange. Use it if you want to
run your optimization commands with up-to-date data.
--eps, --enable-position-stacking
Allow buying the same pair multiple times (position
stacking).
@ -164,10 +175,6 @@ optional arguments:
(same as setting `max_open_trades` to a very high
number).
-l, --live Use live data.
-r, --refresh-pairs-cached
Refresh the pairs files in tests/testdata with the
latest data from the exchange. Use it if you want to
run your backtesting with up-to-date data.
--strategy-list STRATEGY_LIST [STRATEGY_LIST ...]
Provide a commaseparated list of strategies to
backtest Please note that ticker-interval needs to be
@ -188,7 +195,7 @@ optional arguments:
### How to use **--refresh-pairs-cached** parameter?
The first time your run Backtesting, it will take the pairs you have
set in your config file and download data from Bittrex.
set in your config file and download data from the Exchange.
If for any reason you want to update your data set, you use
`--refresh-pairs-cached` to force Backtesting to update the data it has.
@ -206,8 +213,11 @@ to find optimal parameter values for your stategy.
```
usage: freqtrade hyperopt [-h] [-i TICKER_INTERVAL] [--timerange TIMERANGE]
[--customhyperopt NAME] [--eps] [--dmmp] [-e INT]
[-s {all,buy,sell,roi,stoploss} [{all,buy,sell,roi,stoploss} ...]]
[--max_open_trades MAX_OPEN_TRADES]
[--stake_amount STAKE_AMOUNT] [-r]
[--customhyperopt NAME] [--eps] [--dmmp] [-e INT]
[-s {all,buy,sell,roi,stoploss} [{all,buy,sell,roi,stoploss} ...]]
[--print-all] [-j JOBS]
optional arguments:
-h, --help show this help message and exit
@ -215,6 +225,14 @@ optional arguments:
Specify ticker interval (1m, 5m, 30m, 1h, 1d).
--timerange TIMERANGE
Specify what timerange of data to use.
--max_open_trades MAX_OPEN_TRADES
Specify max_open_trades to use.
--stake_amount STAKE_AMOUNT
Specify stake_amount.
-r, --refresh-pairs-cached
Refresh the pairs files in tests/testdata with the
latest data from the exchange. Use it if you want to
run your optimization commands with up-to-date data.
--customhyperopt NAME
Specify hyperopt class name (default:
DefaultHyperOpts).
@ -229,7 +247,13 @@ optional arguments:
-s {all,buy,sell,roi,stoploss} [{all,buy,sell,roi,stoploss} ...], --spaces {all,buy,sell,roi,stoploss} [{all,buy,sell,roi,stoploss} ...]
Specify which parameters to hyperopt. Space separate
list. Default: all.
--print-all Print all results, not only the best ones.
-j JOBS, --job-workers JOBS
The number of concurrently running jobs for
hyperoptimization (hyperopt worker processes). If -1
(default), all CPUs are used, for -2, all CPUs but one
are used, etc. If 1 is given, no parallel computing
code is used at all.
```
## Edge commands
@ -237,8 +261,10 @@ optional arguments:
To know your trade expectacny and winrate against historical data, you can use Edge.
```
usage: freqtrade edge [-h] [-i TICKER_INTERVAL] [--timerange TIMERANGE] [-r]
[--stoplosses STOPLOSS_RANGE]
usage: freqtrade edge [-h] [-i TICKER_INTERVAL] [--timerange TIMERANGE]
[--max_open_trades MAX_OPEN_TRADES]
[--stake_amount STAKE_AMOUNT] [-r]
[--stoplosses STOPLOSS_RANGE]
optional arguments:
-h, --help show this help message and exit
@ -246,10 +272,14 @@ optional arguments:
Specify ticker interval (1m, 5m, 30m, 1h, 1d).
--timerange TIMERANGE
Specify what timerange of data to use.
--max_open_trades MAX_OPEN_TRADES
Specify max_open_trades to use.
--stake_amount STAKE_AMOUNT
Specify stake_amount.
-r, --refresh-pairs-cached
Refresh the pairs files in tests/testdata with the
latest data from the exchange. Use it if you want to
run your edge with up-to-date data.
run your optimization commands with up-to-date data.
--stoplosses STOPLOSS_RANGE
Defines a range of stoploss against which edge will
assess the strategy the format is "min,max,step"
@ -267,4 +297,4 @@ in [misc.py](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/misc.
## Next step
The optimal strategy of the bot will change with time depending of the market trends. The next step is to
[optimize your bot](bot-optimization.md).
[Strategy Customization](strategy-customization.md).

View File

@ -40,10 +40,10 @@ Mandatory Parameters are marked as **Required**.
| `ask_strategy.order_book_max` | 0 | Bot will scan from the top min to max Order Book Asks searching for a profitable rate.
| `order_types` | None | Configure order-types depending on the action (`"buy"`, `"sell"`, `"stoploss"`, `"stoploss_on_exchange"`). [More information below](#understand-order_types). [Strategy Override](#parameters-in-the-strategy).
| `order_time_in_force` | None | Configure time in force for buy and sell orders. [More information below](#understand-order_time_in_force). [Strategy Override](#parameters-in-the-strategy).
| `exchange.name` | bittrex | **Required.** Name of the exchange class to use. [List below](#user-content-what-values-for-exchangename).
| `exchange.name` | | **Required.** Name of the exchange class to use. [List below](#user-content-what-values-for-exchangename).
| `exchange.sandbox` | false | Use the 'sandbox' version of the exchange, where the exchange provides a sandbox for risk-free integration. See [here](sandbox-testing.md) in more details.
| `exchange.key` | key | API key to use for the exchange. Only required when you are in production mode.
| `exchange.secret` | secret | API secret to use for the exchange. Only required when you are in production mode.
| `exchange.key` | '' | API key to use for the exchange. Only required when you are in production mode.
| `exchange.secret` | '' | API secret to use for the exchange. Only required when you are in production mode.
| `exchange.pair_whitelist` | [] | List of currency to use by the bot. Can be overrided with `--dynamic-whitelist` param.
| `exchange.pair_blacklist` | [] | List of currency the bot must avoid. Useful when using `--dynamic-whitelist` param.
| `exchange.ccxt_config` | None | Additional CCXT parameters passed to the regular ccxt instance. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://ccxt.readthedocs.io/en/latest/manual.html#instantiation)
@ -131,17 +131,11 @@ If it is not set in either Strategy or Configuration, a default of 1000% `{"0":
### Understand stoploss
The `stoploss` configuration parameter is loss in percentage that should trigger a sale.
For example, value `-0.10` will cause immediate sell if the
profit dips below -10% for a given trade. This parameter is optional.
Most of the strategy files already include the optimal `stoploss`
value. This parameter is optional. If you use it in the configuration file, it will take over the
`stoploss` value from the strategy file.
Go to the [stoploss documentation](stoploss.md) for more details.
### Understand trailing stoploss
Go to the [trailing stoploss Documentation](stoploss.md) for details on trailing stoploss.
Go to the [trailing stoploss Documentation](stoploss.md#trailing-stop-loss) for details on trailing stoploss.
### Understand initial_state
@ -191,14 +185,28 @@ If this is configured, all 4 values (`buy`, `sell`, `stoploss` and
`stoploss_on_exchange`) need to be present, otherwise the bot will warn about it and fail to start.
The below is the default which is used if this is not configured in either strategy or configuration file.
Syntax for Strategy:
```python
"order_types": {
order_types = {
"buy": "limit",
"sell": "limit",
"stoploss": "market",
"stoploss_on_exchange": False,
"stoploss_on_exchange_interval": 60
},
}
```
Configuration:
```json
"order_types": {
"buy": "limit",
"sell": "limit",
"stoploss": "market",
"stoploss_on_exchange": false,
"stoploss_on_exchange_interval": 60
}
```
!!! Note
@ -289,6 +297,25 @@ This configuration enables binance, as well as rate limiting to avoid bans from
Optimal settings for rate limiting depend on the exchange and the size of the whitelist, so an ideal parameter will vary on many other settings.
We try to provide sensible defaults per exchange where possible, if you encounter bans please make sure that `"enableRateLimit"` is enabled and increase the `"rateLimit"` parameter step by step.
#### Advanced FreqTrade Exchange configuration
Advanced options can be configured using the `_ft_has_params` setting, which will override Defaults and exchange-specific behaviours.
Available options are listed in the exchange-class as `_ft_has_default`.
For example, to test the order type `FOK` with Kraken, and modify candle_limit to 200 (so you only get 200 candles per call):
```json
"exchange": {
"name": "kraken",
"_ft_has_params": {
"order_time_in_force": ["gtc", "fok"],
"ohlcv_candle_limit": 200
}
```
!!! Warning
Please make sure to fully understand the impacts of these settings before modifying them.
### What values can be used for fiat_display_currency?

42
docs/data-analysis.md Normal file
View File

@ -0,0 +1,42 @@
# Analyzing bot data
After performing backtests, or after running the bot for some time, it will be interesting to analyze the results your bot generated.
A good way for this is using Jupyter (notebook or lab) - which provides an interactive environment to analyze the data.
The following helpers will help you loading the data into Pandas DataFrames, and may also give you some starting points in analyzing the results.
## Backtesting
To analyze your backtest results, you can [export the trades](#exporting-trades-to-file).
You can then load the trades to perform further analysis.
Freqtrade provides the `load_backtest_data()` helper function to easily load the backtest results, which takes the path to the the backtest-results file as parameter.
``` python
from freqtrade.data.btanalysis import load_backtest_data
df = load_backtest_data("user_data/backtest-result.json")
# Show value-counts per pair
df.groupby("pair")["sell_reason"].value_counts()
```
This will allow you to drill deeper into your backtest results, and perform analysis which otherwise would make the regular backtest-output very difficult to digest due to information overload.
If you have some ideas for interesting / helpful backtest data analysis ideas, please submit a Pull Request so the community can benefit from it.
## Live data
To analyze the trades your bot generated, you can load them to a DataFrame as follows:
``` python
from freqtrade.data.btanalysis import load_trades_from_db
df = load_trades_from_db("sqlite:///tradesv3.sqlite")
df.groupby("pair")["sell_reason"].value_counts()
```
Feel free to submit an issue or Pull Request enhancing this document if you would like to share ideas on how to best analyze the data.

View File

@ -2,7 +2,7 @@
This page is intended for developers of FreqTrade, people who want to contribute to the FreqTrade codebase or documentation, or people who want to understand the source code of the application they're running.
All contributions, bug reports, bug fixes, documentation improvements, enhancements and ideas are welcome. We [track issues](https://github.com/freqtrade/freqtrade/issues) on [GitHub](https://github.com) and also have a dev channel in [slack](https://join.slack.com/t/highfrequencybot/shared_invite/enQtMjQ5NTM0OTYzMzY3LWMxYzE3M2MxNDdjMGM3ZTYwNzFjMGIwZGRjNTc3ZGU3MGE3NzdmZGMwNmU3NDM5ZTNmM2Y3NjRiNzk4NmM4OGE) where you can ask questions.
All contributions, bug reports, bug fixes, documentation improvements, enhancements and ideas are welcome. We [track issues](https://github.com/freqtrade/freqtrade/issues) on [GitHub](https://github.com) and also have a dev channel in [slack](https://join.slack.com/t/highfrequencybot/shared_invite/enQtNjU5ODcwNjI1MDU3LWEyODBiNzkzNzcyNzU0MWYyYzE5NjIyOTQxMzBmMGUxOTIzM2YyN2Y4NWY1YTEwZDgwYTRmMzE2NmM5ZmY2MTg) where you can ask questions.
## Documentation
@ -81,6 +81,51 @@ Please also run `self._validate_whitelist(pairs)` and to check and remove pairs
This is a simple method used by `VolumePairList` - however serves as a good example.
It implements caching (`@cached(TTLCache(maxsize=1, ttl=1800))`) as well as a configuration option to allow different (but similar) strategies to work with the same PairListProvider.
## Implement a new Exchange (WIP)
!!! Note
This section is a Work in Progress and is not a complete guide on how to test a new exchange with FreqTrade.
Most exchanges supported by CCXT should work out of the box.
### Stoploss On Exchange
Check if the new exchange supports Stoploss on Exchange orders through their API.
Since CCXT does not provide unification for Stoploss On Exchange yet, we'll need to implement the exchange-specific parameters ourselfs. Best look at `binance.py` for an example implementation of this. You'll need to dig through the documentation of the Exchange's API on how exactly this can be done. [CCXT Issues](https://github.com/ccxt/ccxt/issues) may also provide great help, since others may have implemented something similar for their projects.
### Incomplete candles
While fetching OHLCV data, we're may end up getting incomplete candles (Depending on the exchange).
To demonstrate this, we'll use daily candles (`"1d"`) to keep things simple.
We query the api (`ct.fetch_ohlcv()`) for the timeframe and look at the date of the last entry. If this entry changes or shows the date of a "incomplete" candle, then we should drop this since having incomplete candles is problematic because indicators assume that only complete candles are passed to them, and will generate a lot of false buy signals. By default, we're therefore removing the last candle assuming it's incomplete.
To check how the new exchange behaves, you can use the following snippet:
``` python
import ccxt
from datetime import datetime
from freqtrade.data.converter import parse_ticker_dataframe
ct = ccxt.binance()
timeframe = "1d"
pair = "XLM/BTC" # Make sure to use a pair that exists on that exchange!
raw = ct.fetch_ohlcv(pair, timeframe=timeframe)
# convert to dataframe
df1 = parse_ticker_dataframe(raw, timeframe, pair=pair, drop_incomplete=False)
print(df1["date"].tail(1))
print(datetime.utcnow())
```
``` output
19 2019-06-08 00:00:00+00:00
2019-06-09 12:30:27.873327
```
The output will show the last entry from the Exchange as well as the current UTC date.
If the day shows the same day, then the last candle can be assumed as incomplete and should be dropped (leave the setting `"ohlcv_partial_candle"` from the exchange-class untouched / True). Otherwise, set `"ohlcv_partial_candle"` to `False` to not drop Candles (shown in the example above).
## Creating a release
This part of the documentation is aimed at maintainers, and shows how to create a release.
@ -95,9 +140,9 @@ git checkout develop
git checkout -b new_release
```
* edit `freqtrade/__init__.py` and add the desired version (for example `0.18.0`)
* Edit `freqtrade/__init__.py` and add the desired version (for example `0.18.0`)
* Commit this part
* push that branch to the remote and create a PR
* push that branch to the remote and create a PR against the master branch
### create changelog from git commits
@ -108,10 +153,12 @@ git log --oneline --no-decorate --no-merges master..develop
### Create github release / tag
* Use the button "Draft a new release" in the Github UI (subsection releases)
* Use the version-number specified as tag.
* Use "master" as reference (this step comes after the above PR is merged).
* use the above changelog as release comment (as codeblock)
* Use the above changelog as release comment (as codeblock)
### After-release
* update version in develop to next valid version and postfix that with `-dev` (`0.18.0 -> 0.18.1-dev`)
* Update version in develop to next valid version and postfix that with `-dev` (`0.18.0 -> 0.18.1-dev`).
* Create a PR against develop to update that branch.

204
docs/docker.md Normal file
View File

@ -0,0 +1,204 @@
# Using FreqTrade with Docker
## Install Docker
Start by downloading and installing Docker CE for your platform:
* [Mac](https://docs.docker.com/docker-for-mac/install/)
* [Windows](https://docs.docker.com/docker-for-windows/install/)
* [Linux](https://docs.docker.com/install/)
Once you have Docker installed, simply prepare the config file (e.g. `config.json`) and run the image for `freqtrade` as explained below.
## Download the official FreqTrade docker image
Pull the image from docker hub.
Branches / tags available can be checked out on [Dockerhub](https://hub.docker.com/r/freqtradeorg/freqtrade/tags/).
```bash
docker pull freqtradeorg/freqtrade:develop
# Optionally tag the repository so the run-commands remain shorter
docker tag freqtradeorg/freqtrade:develop freqtrade
```
To update the image, simply run the above commands again and restart your running container.
Should you require additional libraries, please [build the image yourself](#build-your-own-docker-image).
### Prepare the configuration files
Even though you will use docker, you'll still need some files from the github repository.
#### Clone the git repository
Linux/Mac/Windows with WSL
```bash
git clone https://github.com/freqtrade/freqtrade.git
```
Windows with docker
```bash
git clone --config core.autocrlf=input https://github.com/freqtrade/freqtrade.git
```
#### Copy `config.json.example` to `config.json`
```bash
cd freqtrade
cp -n config.json.example config.json
```
> To understand the configuration options, please refer to the [Bot Configuration](configuration.md) page.
#### Create your database file
Production
```bash
touch tradesv3.sqlite
````
Dry-Run
```bash
touch tradesv3.dryrun.sqlite
```
!!! Note
Make sure to use the path to this file when starting the bot in docker.
### Build your own Docker image
Best start by pulling the official docker image from dockerhub as explained [here](#download-the-official-docker-image) to speed up building.
To add additional libraries to your docker image, best check out [Dockerfile.technical](https://github.com/freqtrade/freqtrade/blob/develop/Dockerfile.technical) which adds the [technical](https://github.com/freqtrade/technical) module to the image.
```bash
docker build -t freqtrade -f Dockerfile.technical .
```
If you are developing using Docker, use `Dockerfile.develop` to build a dev Docker image, which will also set up develop dependencies:
```bash
docker build -f Dockerfile.develop -t freqtrade-dev .
```
!!! Note
For security reasons, your configuration file will not be included in the image, you will need to bind mount it. It is also advised to bind mount an SQLite database file (see the "5. Run a restartable docker image" section) to keep it between updates.
#### Verify the Docker image
After the build process you can verify that the image was created with:
```bash
docker images
```
The output should contain the freqtrade image.
### Run the Docker image
You can run a one-off container that is immediately deleted upon exiting with the following command (`config.json` must be in the current working directory):
```bash
docker run --rm -v `pwd`/config.json:/freqtrade/config.json -it freqtrade
```
!!! Warning
In this example, the database will be created inside the docker instance and will be lost when you will refresh your image.
#### Adjust timezone
By default, the container will use UTC timezone.
Should you find this irritating please add the following to your docker commands:
##### Linux
``` bash
-v /etc/timezone:/etc/timezone:ro
# Complete command:
docker run --rm -v /etc/timezone:/etc/timezone:ro -v `pwd`/config.json:/freqtrade/config.json -it freqtrade
```
##### MacOS
There is known issue in OSX Docker versions after 17.09.1, whereby `/etc/localtime` cannot be shared causing Docker to not start. A work-around for this is to start with the following cmd.
```bash
docker run --rm -e TZ=`ls -la /etc/localtime | cut -d/ -f8-9` -v `pwd`/config.json:/freqtrade/config.json -it freqtrade
```
More information on this docker issue and work-around can be read [here](https://github.com/docker/for-mac/issues/2396).
### Run a restartable docker image
To run a restartable instance in the background (feel free to place your configuration and database files wherever it feels comfortable on your filesystem).
#### Move your config file and database
The following will assume that you place your configuration / database files to `~/.freqtrade`, which is a hidden folder in your home directory. Feel free to use a different folder and replace the folder in the upcomming commands.
```bash
mkdir ~/.freqtrade
mv config.json ~/.freqtrade
mv tradesv3.sqlite ~/.freqtrade
```
#### Run the docker image
```bash
docker run -d \
--name freqtrade \
-v ~/.freqtrade/config.json:/freqtrade/config.json \
-v ~/.freqtrade/user_data/:/freqtrade/user_data \
-v ~/.freqtrade/tradesv3.sqlite:/freqtrade/tradesv3.sqlite \
freqtrade --db-url sqlite:///tradesv3.sqlite --strategy MyAwesomeStrategy
```
!!! Note
db-url defaults to `sqlite:///tradesv3.sqlite` but it defaults to `sqlite://` if `dry_run=True` is being used.
To override this behaviour use a custom db-url value: i.e.: `--db-url sqlite:///tradesv3.dryrun.sqlite`
!!! Note
All available bot command line parameters can be added to the end of the `docker run` command.
### Monitor your Docker instance
You can use the following commands to monitor and manage your container:
```bash
docker logs freqtrade
docker logs -f freqtrade
docker restart freqtrade
docker stop freqtrade
docker start freqtrade
```
For more information on how to operate Docker, please refer to the [official Docker documentation](https://docs.docker.com/).
!!! Note
You do not need to rebuild the image for configuration changes, it will suffice to edit `config.json` and restart the container.
### Backtest with docker
The following assumes that the download/setup of the docker image have been completed successfully.
Also, backtest-data should be available at `~/.freqtrade/user_data/`.
```bash
docker run -d \
--name freqtrade \
-v /etc/localtime:/etc/localtime:ro \
-v ~/.freqtrade/config.json:/freqtrade/config.json \
-v ~/.freqtrade/tradesv3.sqlite:/freqtrade/tradesv3.sqlite \
-v ~/.freqtrade/user_data/:/freqtrade/user_data/ \
freqtrade --strategy AwsomelyProfitableStrategy backtesting
```
Head over to the [Backtesting Documentation](backtesting.md) for more details.
!!! Note
Additional bot command line parameters can be appended after the image name (`freqtrade` in the above example).

View File

@ -12,7 +12,7 @@ and still take a long time.
## Prepare Hyperopting
Before we start digging into Hyperopt, we recommend you to take a look at
an example hyperopt file located into [user_data/hyperopts/](https://github.com/freqtrade/freqtrade/blob/develop/user_data/hyperopts/test_hyperopt.py)
an example hyperopt file located into [user_data/hyperopts/](https://github.com/freqtrade/freqtrade/blob/develop/user_data/hyperopts/sample_hyperopt.py)
Configuring hyperopt is similar to writing your own strategy, and many tasks will be similar and a lot of code can be copied across from the strategy.
@ -71,6 +71,11 @@ Place the corresponding settings into the following methods
The configuration and rules are the same than for buy signals.
To avoid naming collisions in the search-space, please prefix all sell-spaces with `sell-`.
#### Using ticker-interval as part of the Strategy
The Strategy exposes the ticker-interval as `self.ticker_interval`. The same value is available as class-attribute `HyperoptName.ticker_interval`.
In the case of the linked sample-value this would be `SampleHyperOpts.ticker_interval`.
## Solving a Mystery
Let's say you are curious: should you use MACD crossings or lower Bollinger
@ -122,9 +127,10 @@ So let's write the buy strategy using these values:
dataframe['macd'], dataframe['macdsignal']
))
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'buy'] = 1
if conditions:
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'buy'] = 1
return dataframe

View File

@ -21,8 +21,8 @@ Freqtrade is a cryptocurrency trading bot written in Python.
We strongly recommend you to have basic coding skills and Python knowledge. Do not hesitate to read the source code and understand the mechanisms of this bot, algorithms and techniques implemented in it.
## Features
- Based on Python 3.6+: For botting on any operating system — Windows, macOS and Linux.
- Persistence: Persistence is achieved through sqlite database.
- Dry-run mode: Run the bot without playing money.
@ -31,17 +31,19 @@ Freqtrade is a cryptocurrency trading bot written in Python.
- Edge position sizing: Calculate your win rate, risk reward ratio, the best stoploss and adjust your position size before taking a position for each specific market.
- Whitelist crypto-currencies: Select which crypto-currency you want to trade or use dynamic whitelists based on market (pair) trade volume.
- Blacklist crypto-currencies: Select which crypto-currency you want to avoid.
- Manageable via Telegram: Manage the bot with Telegram.
- Manageable via Telegram or REST APi: Manage the bot with Telegram or via the builtin REST API.
- Display profit/loss in fiat: Display your profit/loss in any of 33 fiat currencies supported.
- Daily summary of profit/loss: Receive the daily summary of your profit/loss.
- Performance status report: Receive the performance status of your current trades.
## Requirements
### Up to date clock
The clock on the system running the bot must be accurate, synchronized to a NTP server frequently enough to avoid problems with communication to the exchanges.
### Hardware requirements
To run this bot we recommend you a cloud instance with a minimum of:
- 2GB RAM
@ -49,6 +51,7 @@ To run this bot we recommend you a cloud instance with a minimum of:
- 2vCPU
### Software requirements
- Python 3.6.x
- pip (pip3)
- git
@ -56,12 +59,13 @@ To run this bot we recommend you a cloud instance with a minimum of:
- virtualenv (Recommended)
- Docker (Recommended)
## Support
Help / Slack
For any questions not covered by the documentation or for further information about the bot, we encourage you to join our Slack channel.
Click [here](https://join.slack.com/t/highfrequencybot/shared_invite/enQtMjQ5NTM0OTYzMzY3LWMxYzE3M2MxNDdjMGM3ZTYwNzFjMGIwZGRjNTc3ZGU3MGE3NzdmZGMwNmU3NDM5ZTNmM2Y3NjRiNzk4NmM4OGE) to join Slack channel.
Click [here](https://join.slack.com/t/highfrequencybot/shared_invite/enQtNjU5ODcwNjI1MDU3LWEyODBiNzkzNzcyNzU0MWYyYzE5NjIyOTQxMzBmMGUxOTIzM2YyN2Y4NWY1YTEwZDgwYTRmMzE2NmM5ZmY2MTg) to join Slack channel.
## Ready to try?
Begin by reading our installation guide [here](installation).

View File

@ -1,58 +1,21 @@
# Installation
This page explains how to prepare your environment for running the bot.
## Prerequisite
Before running your bot in production you will need to setup few
external API. In production mode, the bot required valid Bittrex API
credentials and a Telegram bot (optional but recommended).
external API. In production mode, the bot will require valid Exchange API
credentials. We also recommend a [Telegram bot](telegram-usage.md#setup-your-telegram-bot) (optional but recommended).
- [Setup your exchange account](#setup-your-exchange-account)
- [Backtesting commands](#setup-your-telegram-bot)
### Setup your exchange account
*To be completed, please feel free to complete this section.*
### Setup your Telegram bot
The only things you need is a working Telegram bot and its API token.
Below we explain how to create your Telegram Bot, and how to get your
Telegram user id.
You will need to create API Keys (Usually you get `key` and `secret`) from the Exchange website and insert this into the appropriate fields in the configuration or when asked by the installation script.
### 1. Create your Telegram bot
**1.1. Start a chat with https://telegram.me/BotFather**
**1.2. Send the message `/newbot`. ** *BotFather response:*
```
Alright, a new bot. How are we going to call it? Please choose a name for your bot.
```
**1.3. Choose the public name of your bot (e.x. `Freqtrade bot`)**
*BotFather response:*
```
Good. Now let's choose a username for your bot. It must end in `bot`. Like this, for example: TetrisBot or tetris_bot.
```
**1.4. Choose the name id of your bot (e.x "`My_own_freqtrade_bot`")**
**1.5. Father bot will return you the token (API key)**<br/>
Copy it and keep it you will use it for the config parameter `token`.
*BotFather response:*
```hl_lines="4"
Done! Congratulations on your new bot. You will find it at t.me/My_own_freqtrade_bot. You can now add a description, about section and profile picture for your bot, see /help for a list of commands. By the way, when you've finished creating your cool bot, ping our Bot Support if you want a better username for it. Just make sure the bot is fully operational before you do this.
Use this token to access the HTTP API:
521095879:AAEcEZEL7ADJ56FtG_qD0bQJSKETbXCBCi0
For a description of the Bot API, see this page: https://core.telegram.org/bots/api
```
**1.6. Don't forget to start the conversation with your bot, by clicking /START button**
### 2. Get your user id
**2.1. Talk to https://telegram.me/userinfobot**
**2.2. Get your "Id", you will use it for the config parameter
`chat_id`.**
<hr/>
## Quick start
Freqtrade provides a Linux/MacOS script to install all dependencies and help you to configure the bot.
```bash
@ -61,9 +24,10 @@ cd freqtrade
git checkout develop
./setup.sh --install
```
!!! Note
Windows installation is explained [here](#windows).
<hr/>
## Easy Installation - Linux Script
If you are on Debian, Ubuntu or MacOS a freqtrade provides a script to Install, Update, Configure, and Reset your bot.
@ -101,189 +65,6 @@ Config parameter is a `config.json` configurator. This script will ask you quest
------
## Automatic Installation - Docker
Start by downloading Docker for your platform:
* [Mac](https://www.docker.com/products/docker#/mac)
* [Windows](https://www.docker.com/products/docker#/windows)
* [Linux](https://www.docker.com/products/docker#/linux)
Once you have Docker installed, simply create the config file (e.g. `config.json`) and then create a Docker image for `freqtrade` using the Dockerfile in this repo.
### 1. Prepare the Bot
**1.1. Clone the git repository**
Linux/Mac/Windows with WSL
```bash
git clone https://github.com/freqtrade/freqtrade.git
```
Windows with docker
```bash
git clone --config core.autocrlf=input https://github.com/freqtrade/freqtrade.git
```
**1.2. (Optional) Checkout the develop branch**
```bash
git checkout develop
```
**1.3. Go into the new directory**
```bash
cd freqtrade
```
**1.4. Copy `config.json.example` to `config.json`**
```bash
cp -n config.json.example config.json
```
> To edit the config please refer to the [Bot Configuration](configuration.md) page.
**1.5. Create your database file *(optional - the bot will create it if it is missing)**
Production
```bash
touch tradesv3.sqlite
````
Dry-Run
```bash
touch tradesv3.dryrun.sqlite
```
### 2. Download or build the docker image
Either use the prebuilt image from docker hub - or build the image yourself if you would like more control on which version is used.
Branches / tags available can be checked out on [Dockerhub](https://hub.docker.com/r/freqtradeorg/freqtrade/tags/).
**2.1. Download the docker image**
Pull the image from docker hub and (optionally) change the name of the image
```bash
docker pull freqtradeorg/freqtrade:develop
# Optionally tag the repository so the run-commands remain shorter
docker tag freqtradeorg/freqtrade:develop freqtrade
```
To update the image, simply run the above commands again and restart your running container.
**2.2. Build the Docker image**
```bash
cd freqtrade
docker build -t freqtrade .
```
If you are developing using Docker, use `Dockerfile.develop` to build a dev Docker image, which will also set up develop dependencies:
```bash
docker build -f ./Dockerfile.develop -t freqtrade-dev .
```
For security reasons, your configuration file will not be included in the image, you will need to bind mount it. It is also advised to bind mount an SQLite database file (see the "5. Run a restartable docker image" section) to keep it between updates.
### 3. Verify the Docker image
After the build process you can verify that the image was created with:
```bash
docker images
```
### 4. Run the Docker image
You can run a one-off container that is immediately deleted upon exiting with the following command (`config.json` must be in the current working directory):
```bash
docker run --rm -v /etc/localtime:/etc/localtime:ro -v `pwd`/config.json:/freqtrade/config.json -it freqtrade
```
There is known issue in OSX Docker versions after 17.09.1, whereby /etc/localtime cannot be shared causing Docker to not start. A work-around for this is to start with the following cmd.
```bash
docker run --rm -e TZ=`ls -la /etc/localtime | cut -d/ -f8-9` -v `pwd`/config.json:/freqtrade/config.json -it freqtrade
```
More information on this docker issue and work-around can be read [here](https://github.com/docker/for-mac/issues/2396).
In this example, the database will be created inside the docker instance and will be lost when you will refresh your image.
### 5. Run a restartable docker image
To run a restartable instance in the background (feel free to place your configuration and database files wherever it feels comfortable on your filesystem).
**5.1. Move your config file and database**
```bash
mkdir ~/.freqtrade
mv config.json ~/.freqtrade
mv tradesv3.sqlite ~/.freqtrade
```
**5.2. Run the docker image**
```bash
docker run -d \
--name freqtrade \
-v /etc/localtime:/etc/localtime:ro \
-v ~/.freqtrade/config.json:/freqtrade/config.json \
-v ~/.freqtrade/tradesv3.sqlite:/freqtrade/tradesv3.sqlite \
freqtrade --db-url sqlite:///tradesv3.sqlite
```
!!! Note
db-url defaults to `sqlite:///tradesv3.sqlite` but it defaults to `sqlite://` if `dry_run=True` is being used.
To override this behaviour use a custom db-url value: i.e.: `--db-url sqlite:///tradesv3.dryrun.sqlite`
### 6. Monitor your Docker instance
You can then use the following commands to monitor and manage your container:
```bash
docker logs freqtrade
docker logs -f freqtrade
docker restart freqtrade
docker stop freqtrade
docker start freqtrade
```
For more information on how to operate Docker, please refer to the [official Docker documentation](https://docs.docker.com/).
!!! Note
You do not need to rebuild the image for configuration changes, it will suffice to edit `config.json` and restart the container.
### 7. Backtest with docker
The following assumes that the above steps (1-4) have been completed successfully.
Also, backtest-data should be available at `~/.freqtrade/user_data/`.
```bash
docker run -d \
--name freqtrade \
-v /etc/localtime:/etc/localtime:ro \
-v ~/.freqtrade/config.json:/freqtrade/config.json \
-v ~/.freqtrade/tradesv3.sqlite:/freqtrade/tradesv3.sqlite \
-v ~/.freqtrade/user_data/:/freqtrade/user_data/ \
freqtrade --strategy AwsomelyProfitableStrategy backtesting
```
Head over to the [Backtesting Documentation](backtesting.md) for more details.
!!! Note
Additional parameters can be appended after the image name (`freqtrade` in the above example).
------
## Custom Installation
We've included/collected install instructions for Ubuntu 16.04, MacOS, and Windows. These are guidelines and your success may vary with other distros.
@ -326,7 +107,7 @@ conda activate freqtrade
conda install scipy pandas numpy
sudo apt install libffi-dev
python3 -m pip install -r requirements-pi.txt
python3 -m pip install -r requirements-common.txt
python3 -m pip install -e .
```
@ -409,7 +190,7 @@ If this is the first time you run the bot, ensure you are running it in Dry-run
python3.6 freqtrade -c config.json
```
*Note*: If you run the bot on a server, you should consider using [Docker](#automatic-installation---docker) a terminal multiplexer like `screen` or [`tmux`](https://en.wikipedia.org/wiki/Tmux) to avoid that the bot is stopped on logout.
*Note*: If you run the bot on a server, you should consider using [Docker](docker.md) or a terminal multiplexer like `screen` or [`tmux`](https://en.wikipedia.org/wiki/Tmux) to avoid that the bot is stopped on logout.
#### 7. [Optional] Configure `freqtrade` as a `systemd` service
@ -437,14 +218,13 @@ The `freqtrade.service.watchdog` file contains an example of the service unit co
as the watchdog.
!!! Note
The sd_notify communication between the bot and the systemd service manager will not work if the bot runs in a
Docker container.
The sd_notify communication between the bot and the systemd service manager will not work if the bot runs in a Docker container.
------
## Windows
We recommend that Windows users use [Docker](#docker) as this will work much easier and smoother (also more secure).
We recommend that Windows users use [Docker](docker.md) as this will work much easier and smoother (also more secure).
If that is not possible, try using the Windows Linux subsystem (WSL) - for which the Ubuntu instructions should work.
If that is not available on your system, feel free to try the instructions below, which led to success for some.
@ -488,7 +268,7 @@ error: Microsoft Visual C++ 14.0 is required. Get it with "Microsoft Visual C++
Unfortunately, many packages requiring compilation don't provide a pre-build wheel. It is therefore mandatory to have a C/C++ compiler installed and available for your python environment to use.
The easiest way is to download install Microsoft Visual Studio Community [here](https://visualstudio.microsoft.com/downloads/) and make sure to install "Common Tools for Visual C++" to enable building c code on Windows. Unfortunately, this is a heavy download / dependency (~4Gb) so you might want to consider WSL or docker first.
The easiest way is to download install Microsoft Visual Studio Community [here](https://visualstudio.microsoft.com/downloads/) and make sure to install "Common Tools for Visual C++" to enable building c code on Windows. Unfortunately, this is a heavy download / dependency (~4Gb) so you might want to consider WSL or [docker](docker.md) first.
---

View File

@ -1,63 +1,83 @@
# Plotting
This page explains how to plot prices, indicator, profits.
This page explains how to plot prices, indicators and profits.
## Installation
Plotting scripts use Plotly library. Install/upgrade it with:
``` bash
pip install -U -r requirements-plot.txt
```
pip install --upgrade plotly
```
At least version 2.3.0 is required.
## Plot price and indicators
Usage for the price plotter:
```
script/plot_dataframe.py [-h] [-p pairs] [--live]
``` bash
python3 script/plot_dataframe.py [-h] [-p pairs] [--live]
```
Example
```
python scripts/plot_dataframe.py -p BTC/ETH
``` bash
python3 scripts/plot_dataframe.py -p BTC/ETH
```
The `-p` pairs argument, can be used to specify
pairs you would like to plot.
The `-p` pairs argument can be used to specify pairs you would like to plot.
**Advanced use**
Specify custom indicators.
Use `--indicators1` for the main plot and `--indicators2` for the subplot below (if values are in a different range than prices).
``` bash
python3 scripts/plot_dataframe.py -p BTC/ETH --indicators1 sma,ema --indicators2 macd
```
### Advanced use
To plot multiple pairs, separate them with a comma:
```
python scripts/plot_dataframe.py -p BTC/ETH,XRP/ETH
``` bash
python3 scripts/plot_dataframe.py -p BTC/ETH,XRP/ETH
```
To plot the current live price use the `--live` flag:
```
python scripts/plot_dataframe.py -p BTC/ETH --live
``` bash
python3 scripts/plot_dataframe.py -p BTC/ETH --live
```
To plot a timerange (to zoom in):
``` bash
python3 scripts/plot_dataframe.py -p BTC/ETH --timerange=100-200
```
python scripts/plot_dataframe.py -p BTC/ETH --timerange=100-200
```
Timerange doesn't work with live data.
To plot trades stored in a database use `--db-url` argument:
```
python scripts/plot_dataframe.py --db-url sqlite:///tradesv3.dry_run.sqlite -p BTC/ETH
``` bash
python3 scripts/plot_dataframe.py --db-url sqlite:///tradesv3.dry_run.sqlite -p BTC/ETH --trade-source DB
```
To plot a test strategy the strategy should have first be backtested.
The results may then be plotted with the -s argument:
To plot trades from a backtesting result, use `--export-filename <filename>`
``` bash
python3 scripts/plot_dataframe.py --export-filename user_data/backtest_data/backtest-result.json -p BTC/ETH
```
python scripts/plot_dataframe.py -s Strategy_Name -p BTC/ETH --datadir user_data/data/<exchange_name>/
To plot a custom strategy the strategy should have first be backtested.
The results may then be plotted with the -s argument:
``` bash
python3 scripts/plot_dataframe.py -s Strategy_Name -p BTC/ETH --datadir user_data/data/<exchange_name>/
```
## Plot profit
The profit plotter show a picture with three plots:
The profit plotter shows a picture with three plots:
1) Average closing price for all pairs
2) The summarized profit made by backtesting.
Note that this is not the real-world profit, but
@ -67,7 +87,7 @@ The profit plotter show a picture with three plots:
The first graph is good to get a grip of how the overall market
progresses.
The second graph will show how you algorithm works or doesnt.
The second graph will show how your algorithm works or doesn't.
Perhaps you want an algorithm that steadily makes small profits,
or one that acts less seldom, but makes big swings.
@ -76,13 +96,14 @@ that makes profit spikes.
Usage for the profit plotter:
```
script/plot_profit.py [-h] [-p pair] [--datadir directory] [--ticker_interval num]
``` bash
python3 script/plot_profit.py [-h] [-p pair] [--datadir directory] [--ticker_interval num]
```
The `-p` pair argument, can be used to plot a single pair
Example
```
``` bash
python3 scripts/plot_profit.py --datadir ../freqtrade/freqtrade/tests/testdata-20171221/ -p LTC/BTC
```

193
docs/rest-api.md Normal file
View File

@ -0,0 +1,193 @@
# REST API Usage
## Configuration
Enable the rest API by adding the api_server section to your configuration and setting `api_server.enabled` to `true`.
Sample configuration:
``` json
"api_server": {
"enabled": true,
"listen_ip_address": "127.0.0.1",
"listen_port": 8080,
"username": "Freqtrader",
"password": "SuperSecret1!"
},
```
!!! Danger: Security warning
By default, the configuration listens on localhost only (so it's not reachable from other systems). We strongly recommend to not expose this API to the internet and choose a strong, unique password, since others will potentially be able to control your bot.
!!! Danger: Password selection
Please make sure to select a very strong, unique password to protect your bot from unauthorized access.
You can then access the API by going to `http://127.0.0.1:8080/api/v1/version` to check if the API is running correctly.
To generate a secure password, either use a password manager, or use the below code snipped.
``` python
import secrets
secrets.token_hex()
```
### Configuration with docker
If you run your bot using docker, you'll need to have the bot listen to incomming connections. The security is then handled by docker.
``` json
"api_server": {
"enabled": true,
"listen_ip_address": "0.0.0.0",
"listen_port": 8080
},
```
Add the following to your docker command:
``` bash
-p 127.0.0.1:8080:8080
```
A complete sample-command may then look as follows:
```bash
docker run -d \
--name freqtrade \
-v ~/.freqtrade/config.json:/freqtrade/config.json \
-v ~/.freqtrade/user_data/:/freqtrade/user_data \
-v ~/.freqtrade/tradesv3.sqlite:/freqtrade/tradesv3.sqlite \
-p 127.0.0.1:8080:8080 \
freqtrade --db-url sqlite:///tradesv3.sqlite --strategy MyAwesomeStrategy
```
!!! Danger "Security warning"
By using `-p 8080:8080` the API is available to everyone connecting to the server under the correct port, so others may be able to control your bot.
## Consuming the API
You can consume the API by using the script `scripts/rest_client.py`.
The client script only requires the `requests` module, so FreqTrade does not need to be installed on the system.
``` bash
python3 scripts/rest_client.py <command> [optional parameters]
```
By default, the script assumes `127.0.0.1` (localhost) and port `8080` to be used, however you can specify a configuration file to override this behaviour.
### Minimalistic client config
``` json
{
"api_server": {
"enabled": true,
"listen_ip_address": "0.0.0.0",
"listen_port": 8080
}
}
```
``` bash
python3 scripts/rest_client.py --config rest_config.json <command> [optional parameters]
```
## Available commands
| Command | Default | Description |
|----------|---------|-------------|
| `start` | | Starts the trader
| `stop` | | Stops the trader
| `stopbuy` | | Stops the trader from opening new trades. Gracefully closes open trades according to their rules.
| `reload_conf` | | Reloads the configuration file
| `status` | | Lists all open trades
| `status table` | | List all open trades in a table format
| `count` | | Displays number of trades used and available
| `profit` | | Display a summary of your profit/loss from close trades and some stats about your performance
| `forcesell <trade_id>` | | Instantly sells the given trade (Ignoring `minimum_roi`).
| `forcesell all` | | Instantly sells all open trades (Ignoring `minimum_roi`).
| `forcebuy <pair> [rate]` | | Instantly buys the given pair. Rate is optional. (`forcebuy_enable` must be set to True)
| `performance` | | Show performance of each finished trade grouped by pair
| `balance` | | Show account balance per currency
| `daily <n>` | 7 | Shows profit or loss per day, over the last n days
| `whitelist` | | Show the current whitelist
| `blacklist [pair]` | | Show the current blacklist, or adds a pair to the blacklist.
| `edge` | | Show validated pairs by Edge if it is enabled.
| `version` | | Show version
Possible commands can be listed from the rest-client script using the `help` command.
``` bash
python3 scripts/rest_client.py help
```
``` output
Possible commands:
balance
Get the account balance
:returns: json object
blacklist
Show the current blacklist
:param add: List of coins to add (example: "BNB/BTC")
:returns: json object
count
Returns the amount of open trades
:returns: json object
daily
Returns the amount of open trades
:returns: json object
edge
Returns information about edge
:returns: json object
forcebuy
Buy an asset
:param pair: Pair to buy (ETH/BTC)
:param price: Optional - price to buy
:returns: json object of the trade
forcesell
Force-sell a trade
:param tradeid: Id of the trade (can be received via status command)
:returns: json object
performance
Returns the performance of the different coins
:returns: json object
profit
Returns the profit summary
:returns: json object
reload_conf
Reload configuration
:returns: json object
start
Start the bot if it's in stopped state.
:returns: json object
status
Get the status of open trades
:returns: json object
stop
Stop the bot. Use start to restart
:returns: json object
stopbuy
Stop buying (but handle sells gracefully).
use reload_conf to reset
:returns: json object
version
Returns the version of the bot
:returns: json object containing the version
whitelist
Show the current whitelist
:returns: json object
```

View File

@ -1,4 +1,13 @@
# Stop Loss support
# Stop Loss
The `stoploss` configuration parameter is loss in percentage that should trigger a sale.
For example, value `-0.10` will cause immediate sell if the profit dips below -10% for a given trade. This parameter is optional.
Most of the strategy files already include the optimal `stoploss`
value. This parameter is optional. If you use it in the configuration file, it will take over the
`stoploss` value from the strategy file.
## Stop Loss support
At this stage the bot contains the following stoploss support modes:
@ -16,13 +25,12 @@ In case of stoploss on exchange there is another parameter called `stoploss_on_e
!!! Note
Stoploss on exchange is only supported for Binance as of now.
## Static Stop Loss
This is very simple, basically you define a stop loss of x in your strategy file or alternative in the configuration, which
will overwrite the strategy definition. This will basically try to sell your asset, the second the loss exceeds the defined loss.
## Trail Stop Loss
## Trailing Stop Loss
The initial value for this stop loss, is defined in your strategy or configuration. Just as you would define your Stop Loss normally.
To enable this Feauture all you have to do is to define the configuration element:
@ -63,3 +71,13 @@ The 0.01 would translate to a 1% stop loss, once you hit 1.1% profit.
You should also make sure to have this value (`trailing_stop_positive_offset`) lower than your minimal ROI, otherwise minimal ROI will apply first and sell your trade.
If `"trailing_only_offset_is_reached": true` then the trailing stoploss is only activated once the offset is reached. Until then, the stoploss remains at the configured`stoploss`.
## Changing stoploss on open trades
A stoploss on an open trade can be changed by changing the value in the configuration or strategy and use the `/reload_conf` command (alternatively, completely stopping and restarting the bot also works).
The new stoploss value will be applied to open trades (and corresponding log-messages will be generated).
### Limitations
Stoploss values cannot be changed if `trailing_stop` is enabled and the stoploss has already been adjusted, or if [Edge](edge.md) is enabled (since Edge would recalculate stoploss based on the current market situation).

View File

@ -53,6 +53,12 @@ file as reference.**
It is therefore best to use vectorized operations (across the whole dataframe, not loops) and
avoid index referencing (`df.iloc[-1]`), but instead use `df.shift()` to get to the previous candle.
!!! Warning Using future data
Since backtesting passes the full time interval to the `populate_*()` methods, the strategy author
needs to take care to avoid having the strategy utilize data from the future.
Samples for usage of future data are `dataframe.shift(-1)`, `dataframe.resample("1h")` (this uses the left border of the interval, so moves data from an hour to the start of the hour).
They all use data which is not available during regular operations, so these strategies will perform well during backtesting, but will fail / perform badly in dry-runs.
### Customize Indicators
Buy and sell strategies need indicators. You can add more indicators by extending the list contained in the method `populate_indicators()` from your strategy file.
@ -212,9 +218,12 @@ stoploss = -0.10
```
This would signify a stoploss of -10%.
For the full documentation on stoploss features, look at the dedicated [stoploss page](stoploss.md).
If your exchange supports it, it's recommended to also set `"stoploss_on_exchange"` in the order dict, so your stoploss is on the exchange and cannot be missed for network-problems (or other problems).
For more information on order_types please look [here](https://github.com/freqtrade/freqtrade/blob/develop/docs/configuration.md#understand-order_types).
For more information on order_types please look [here](configuration.md#understand-order_types).
### Ticker interval
@ -292,6 +301,18 @@ if self.dp:
!!! Warning Warning in hyperopt
This option cannot currently be used during hyperopt.
#### Orderbook
``` python
if self.dp:
if self.dp.runmode in ('live', 'dry_run'):
ob = self.dp.orderbook(metadata['pair'], 1)
dataframe['best_bid'] = ob['bids'][0][0]
dataframe['best_ask'] = ob['asks'][0][0]
```
!Warning The order book is not part of the historic data which means backtesting and hyperopt will not work if this
method is used.
#### Available Pairs
``` python
@ -300,6 +321,7 @@ if self.dp:
print(f"available {pair}, {ticker}")
```
#### Get data for non-tradeable pairs
Data for additional, informative pairs (reference pairs) can be beneficial for some strategies.
@ -345,6 +367,30 @@ if self.wallets:
- `get_used(asset)` - currently tied up balance (open orders)
- `get_total(asset)` - total available balance - sum of the 2 above
### Print created dataframe
To inspect the created dataframe, you can issue a print-statement in either `populate_buy_trend()` or `populate_sell_trend()`.
You may also want to print the pair so it's clear what data is currently shown.
``` python
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
(
#>> whatever condition<<<
),
'buy'] = 1
# Print the Analyzed pair
print(f"result for {metadata['pair']}")
# Inspect the last 5 rows
print(dataframe.tail())
return dataframe
```
Printing more than a few rows is also possible (simply use `print(dataframe)` instead of `print(dataframe.tail())`), however not recommended, as that will be very verbose (~500 lines per pair every 5 seconds).
### Where is the default strategy?
The default buy strategy is located in the file
@ -364,7 +410,7 @@ To get additional Ideas for strategies, head over to our [strategy repository](h
Feel free to use any of them as inspiration for your own strategies.
We're happy to accept Pull Requests containing new Strategies to that repo.
We also got a *strategy-sharing* channel in our [Slack community](https://join.slack.com/t/highfrequencybot/shared_invite/enQtMjQ5NTM0OTYzMzY3LWMxYzE3M2MxNDdjMGM3ZTYwNzFjMGIwZGRjNTc3ZGU3MGE3NzdmZGMwNmU3NDM5ZTNmM2Y3NjRiNzk4NmM4OGE) which is a great place to get and/or share ideas.
We also got a *strategy-sharing* channel in our [Slack community](https://join.slack.com/t/highfrequencybot/shared_invite/enQtNjU5ODcwNjI1MDU3LWEyODBiNzkzNzcyNzU0MWYyYzE5NjIyOTQxMzBmMGUxOTIzM2YyN2Y4NWY1YTEwZDgwYTRmMzE2NmM5ZmY2MTg) which is a great place to get and/or share ideas.
## Next step

View File

@ -1,10 +1,45 @@
# Telegram usage
## Prerequisite
## Setup your Telegram bot
To control your bot with Telegram, you need first to
[set up a Telegram bot](installation.md)
and add your Telegram API keys into your config file.
Below we explain how to create your Telegram Bot, and how to get your
Telegram user id.
### 1. Create your Telegram bot
Start a chat with the [Telegram BotFather](https://telegram.me/BotFather)
Send the message `/newbot`.
*BotFather response:*
> Alright, a new bot. How are we going to call it? Please choose a name for your bot.
Choose the public name of your bot (e.x. `Freqtrade bot`)
*BotFather response:*
> Good. Now let's choose a username for your bot. It must end in `bot`. Like this, for example: TetrisBot or tetris_bot.
Choose the name id of your bot and send it to the BotFather (e.g. "`My_own_freqtrade_bot`")
*BotFather response:*
> Done! Congratulations on your new bot. You will find it at `t.me/yourbots_name_bot`. You can now add a description, about section and profile picture for your bot, see /help for a list of commands. By the way, when you've finished creating your cool bot, ping our Bot Support if you want a better username for it. Just make sure the bot is fully operational before you do this.
> Use this token to access the HTTP API: `22222222:APITOKEN`
> For a description of the Bot API, see this page: https://core.telegram.org/bots/api Father bot will return you the token (API key)
Copy the API Token (`22222222:APITOKEN` in the above example) and keep use it for the config parameter `token`.
Don't forget to start the conversation with your bot, by clicking `/START` button
### 2. Get your user id
Talk to the [userinfobot](https://telegram.me/userinfobot)
Get your "Id", you will use it for the config parameter `chat_id`.
## Telegram commands
@ -116,7 +151,7 @@ Return a summary of your profit/loss and performance.
### /forcebuy <pair>
> **BITTREX**: Buying ETH/BTC with limit `0.03400000` (`1.000000 ETH`, `225.290 USD`)
> **BITTREX:** Buying ETH/BTC with limit `0.03400000` (`1.000000 ETH`, `225.290 USD`)
Note that for this to work, `forcebuy_enable` needs to be set to true.

View File

@ -43,6 +43,7 @@ Possible parameters are:
* `stake_amount`
* `stake_currency`
* `fiat_currency`
* `order_type`
### Webhooksell
@ -61,6 +62,7 @@ Possible parameters are:
* `stake_currency`
* `fiat_currency`
* `sell_reason`
* `order_type`
### Webhookstatus

View File

@ -1,15 +1,15 @@
""" FreqTrade bot """
__version__ = '0.18.5'
__version__ = '2019.6'
class DependencyException(BaseException):
class DependencyException(Exception):
"""
Indicates that a assumed dependency is not met.
Indicates that an assumed dependency is not met.
This could happen when there is currently not enough money on the account.
"""
class OperationalException(BaseException):
class OperationalException(Exception):
"""
Requires manual intervention.
This happens when an exchange returns an unexpected error during runtime
@ -17,7 +17,7 @@ class OperationalException(BaseException):
"""
class InvalidOrderException(BaseException):
class InvalidOrderException(Exception):
"""
This is returned when the order is not valid. Example:
If stoploss on exchange order is hit, then trying to cancel the order
@ -25,7 +25,7 @@ class InvalidOrderException(BaseException):
"""
class TemporaryError(BaseException):
class TemporaryError(Exception):
"""
Temporary network or exchange related error.
This could happen when an exchange is congested, unavailable, or the user

View File

@ -6,10 +6,7 @@ To launch Freqtrade as a module
> python -m freqtrade (with Python >= 3.6)
"""
import sys
from freqtrade import main
if __name__ == '__main__':
main.set_loggers()
main.main(sys.argv[1:])
main.main()

View File

@ -27,13 +27,14 @@ class Arguments(object):
Arguments Class. Manage the arguments received by the cli
"""
def __init__(self, args: List[str], description: str) -> None:
def __init__(self, args: Optional[List[str]], description: str) -> None:
self.args = args
self.parsed_arg: Optional[argparse.Namespace] = None
self.parser = argparse.ArgumentParser(description=description)
def _load_args(self) -> None:
self.common_args_parser()
self.common_options()
self.main_options()
self._build_subcommands()
def get_parsed_arg(self) -> argparse.Namespace:
@ -47,7 +48,7 @@ class Arguments(object):
return self.parsed_arg
def parse_args(self) -> argparse.Namespace:
def parse_args(self, no_default_config: bool = False) -> argparse.Namespace:
"""
Parses given arguments and returns an argparse Namespace instance.
"""
@ -55,97 +56,140 @@ class Arguments(object):
# Workaround issue in argparse with action='append' and default value
# (see https://bugs.python.org/issue16399)
if parsed_arg.config is None:
if not no_default_config and parsed_arg.config is None:
parsed_arg.config = [constants.DEFAULT_CONFIG]
return parsed_arg
def common_args_parser(self) -> None:
def common_options(self) -> None:
"""
Parses given common arguments and returns them as a parsed object.
Parses arguments that are common for the main Freqtrade, all subcommands and scripts.
"""
self.parser.add_argument(
parser = self.parser
parser.add_argument(
'-v', '--verbose',
help='Verbose mode (-vv for more, -vvv to get all messages).',
action='count',
dest='loglevel',
default=0,
)
self.parser.add_argument(
parser.add_argument(
'--logfile',
help='Log to the file specified',
help='Log to the file specified.',
dest='logfile',
type=str,
metavar='FILE'
metavar='FILE',
)
self.parser.add_argument(
parser.add_argument(
'--version',
action='version',
version=f'%(prog)s {__version__}'
)
self.parser.add_argument(
parser.add_argument(
'-c', '--config',
help='Specify configuration file (default: %(default)s). '
'Multiple --config options may be used.',
help=f'Specify configuration file (default: `{constants.DEFAULT_CONFIG}`). '
f'Multiple --config options may be used. '
f'Can be set to `-` to read config from stdin.',
dest='config',
action='append',
type=str,
metavar='PATH',
)
self.parser.add_argument(
parser.add_argument(
'-d', '--datadir',
help='Path to backtest data.',
dest='datadir',
default=None,
type=str,
metavar='PATH',
)
self.parser.add_argument(
def main_options(self) -> None:
"""
Parses arguments for the main Freqtrade.
"""
parser = self.parser
parser.add_argument(
'-s', '--strategy',
help='Specify strategy class name (default: %(default)s).',
help='Specify strategy class name (default: `%(default)s`).',
dest='strategy',
default='DefaultStrategy',
type=str,
metavar='NAME',
)
self.parser.add_argument(
parser.add_argument(
'--strategy-path',
help='Specify additional strategy lookup path.',
dest='strategy_path',
type=str,
metavar='PATH',
)
self.parser.add_argument(
parser.add_argument(
'--dynamic-whitelist',
help='Dynamically generate and update whitelist'
' based on 24h BaseVolume (default: %(const)s).'
' DEPRECATED.',
help='Dynamically generate and update whitelist '
'based on 24h BaseVolume (default: %(const)s). '
'DEPRECATED.',
dest='dynamic_whitelist',
const=constants.DYNAMIC_WHITELIST,
type=int,
metavar='INT',
nargs='?',
)
self.parser.add_argument(
parser.add_argument(
'--db-url',
help='Override trades database URL, this is useful if dry_run is enabled'
' or in custom deployments (default: %(default)s).',
help=f'Override trades database URL, this is useful in custom deployments '
f'(default: `{constants.DEFAULT_DB_PROD_URL}` for Live Run mode, '
f'`{constants.DEFAULT_DB_DRYRUN_URL}` for Dry Run).',
dest='db_url',
type=str,
metavar='PATH',
)
self.parser.add_argument(
parser.add_argument(
'--sd-notify',
help='Notify systemd service manager.',
action='store_true',
dest='sd_notify',
)
@staticmethod
def backtesting_options(parser: argparse.ArgumentParser) -> None:
def common_optimize_options(self, subparser: argparse.ArgumentParser = None) -> None:
"""
Parses given arguments for Backtesting scripts.
Parses arguments common for Backtesting, Edge and Hyperopt modules.
:param parser:
"""
parser = subparser or self.parser
parser.add_argument(
'-i', '--ticker-interval',
help='Specify ticker interval (`1m`, `5m`, `30m`, `1h`, `1d`).',
dest='ticker_interval',
)
parser.add_argument(
'--timerange',
help='Specify what timerange of data to use.',
dest='timerange',
)
parser.add_argument(
'--max_open_trades',
help='Specify max_open_trades to use.',
type=int,
dest='max_open_trades',
)
parser.add_argument(
'--stake_amount',
help='Specify stake_amount.',
type=float,
dest='stake_amount',
)
parser.add_argument(
'-r', '--refresh-pairs-cached',
help='Refresh the pairs files in tests/testdata with the latest data from the '
'exchange. Use it if you want to run your optimization commands with '
'up-to-date data.',
action='store_true',
dest='refresh_pairs',
)
def backtesting_options(self, subparser: argparse.ArgumentParser = None) -> None:
"""
Parses given arguments for Backtesting module.
"""
parser = subparser or self.parser
parser.add_argument(
'--eps', '--enable-position-stacking',
help='Allow buying the same pair multiple times (position stacking).',
@ -167,113 +211,57 @@ class Arguments(object):
action='store_true',
dest='live',
)
parser.add_argument(
'-r', '--refresh-pairs-cached',
help='Refresh the pairs files in tests/testdata with the latest data from the '
'exchange. Use it if you want to run your backtesting with up-to-date data.',
action='store_true',
dest='refresh_pairs',
)
parser.add_argument(
'--strategy-list',
help='Provide a commaseparated list of strategies to backtest '
help='Provide a comma-separated list of strategies to backtest. '
'Please note that ticker-interval needs to be set either in config '
'or via command line. When using this together with --export trades, '
'or via command line. When using this together with `--export trades`, '
'the strategy-name is injected into the filename '
'(so backtest-data.json becomes backtest-data-DefaultStrategy.json',
'(so `backtest-data.json` becomes `backtest-data-DefaultStrategy.json`',
nargs='+',
dest='strategy_list',
)
parser.add_argument(
'--export',
help='Export backtest results, argument are: trades. '
'Example --export=trades',
type=str,
default=None,
'Example: `--export=trades`',
dest='export',
)
parser.add_argument(
'--export-filename',
help='Save backtest results to this filename \
requires --export to be set as well\
Example --export-filename=user_data/backtest_data/backtest_today.json\
(default: %(default)s)',
type=str,
help='Save backtest results to the file with this filename (default: `%(default)s`). '
'Requires `--export` to be set as well. '
'Example: `--export-filename=user_data/backtest_data/backtest_today.json`',
default=os.path.join('user_data', 'backtest_data', 'backtest-result.json'),
dest='exportfilename',
metavar='PATH',
)
@staticmethod
def edge_options(parser: argparse.ArgumentParser) -> None:
def edge_options(self, subparser: argparse.ArgumentParser = None) -> None:
"""
Parses given arguments for Backtesting scripts.
Parses given arguments for Edge module.
"""
parser.add_argument(
'-r', '--refresh-pairs-cached',
help='Refresh the pairs files in tests/testdata with the latest data from the '
'exchange. Use it if you want to run your edge with up-to-date data.',
action='store_true',
dest='refresh_pairs',
)
parser = subparser or self.parser
parser.add_argument(
'--stoplosses',
help='Defines a range of stoploss against which edge will assess the strategy '
'the format is "min,max,step" (without any space).'
'example: --stoplosses=-0.01,-0.1,-0.001',
type=str,
help='Defines a range of stoploss values against which edge will assess the strategy. '
'The format is "min,max,step" (without any space). '
'Example: `--stoplosses=-0.01,-0.1,-0.001`',
dest='stoploss_range',
)
@staticmethod
def optimizer_shared_options(parser: argparse.ArgumentParser) -> None:
def hyperopt_options(self, subparser: argparse.ArgumentParser = None) -> None:
"""
Parses given common arguments for Backtesting and Hyperopt scripts.
:param parser:
:return:
Parses given arguments for Hyperopt module.
"""
parser.add_argument(
'-i', '--ticker-interval',
help='Specify ticker interval (1m, 5m, 30m, 1h, 1d).',
dest='ticker_interval',
type=str,
)
parser = subparser or self.parser
parser.add_argument(
'--timerange',
help='Specify what timerange of data to use.',
default=None,
type=str,
dest='timerange',
)
parser.add_argument(
'--max_open_trades',
help='Specify max_open_trades to use.',
default=None,
type=int,
dest='max_open_trades',
)
parser.add_argument(
'--stake_amount',
help='Specify stake_amount.',
default=None,
type=float,
dest='stake_amount',
)
@staticmethod
def hyperopt_options(parser: argparse.ArgumentParser) -> None:
"""
Parses given arguments for Hyperopt scripts.
"""
parser.add_argument(
'--customhyperopt',
help='Specify hyperopt class name (default: %(default)s).',
help='Specify hyperopt class name (default: `%(default)s`).',
dest='hyperopt',
default=constants.DEFAULT_HYPEROPT,
type=str,
metavar='NAME',
)
parser.add_argument(
@ -283,7 +271,6 @@ class Arguments(object):
dest='position_stacking',
default=False
)
parser.add_argument(
'--dmmp', '--disable-max-market-positions',
help='Disable applying `max_open_trades` during backtest '
@ -302,41 +289,97 @@ class Arguments(object):
)
parser.add_argument(
'-s', '--spaces',
help='Specify which parameters to hyperopt. Space separate list. \
Default: %(default)s.',
help='Specify which parameters to hyperopt. Space-separated list. '
'Default: `%(default)s`.',
choices=['all', 'buy', 'sell', 'roi', 'stoploss'],
default='all',
nargs='+',
dest='spaces',
)
parser.add_argument(
'--print-all',
help='Print all results, not only the best ones.',
action='store_true',
dest='print_all',
default=False
)
parser.add_argument(
'-j', '--job-workers',
help='The number of concurrently running jobs for hyperoptimization '
'(hyperopt worker processes). '
'If -1 (default), all CPUs are used, for -2, all CPUs but one are used, etc. '
'If 1 is given, no parallel computing code is used at all.',
dest='hyperopt_jobs',
default=-1,
type=int,
metavar='JOBS',
)
parser.add_argument(
'--random-state',
help='Set random state to some positive integer for reproducible hyperopt results.',
dest='hyperopt_random_state',
type=Arguments.check_int_positive,
metavar='INT',
)
parser.add_argument(
'--min-trades',
help="Set minimal desired number of trades for evaluations in the hyperopt "
"optimization path (default: 1).",
dest='hyperopt_min_trades',
default=1,
type=Arguments.check_int_positive,
metavar='INT',
)
def list_exchanges_options(self, subparser: argparse.ArgumentParser = None) -> None:
"""
Parses given arguments for the list-exchanges command.
"""
parser = subparser or self.parser
parser.add_argument(
'-1', '--one-column',
help='Print exchanges in one column.',
action='store_true',
dest='print_one_column',
)
def _build_subcommands(self) -> None:
"""
Builds and attaches all subcommands
Builds and attaches all subcommands.
:return: None
"""
from freqtrade.optimize import backtesting, hyperopt, edge_cli
from freqtrade.optimize import start_backtesting, start_hyperopt, start_edge
from freqtrade.utils import start_list_exchanges
subparsers = self.parser.add_subparsers(dest='subparser')
# Add backtesting subcommand
backtesting_cmd = subparsers.add_parser('backtesting', help='Backtesting module.')
backtesting_cmd.set_defaults(func=backtesting.start)
self.optimizer_shared_options(backtesting_cmd)
backtesting_cmd.set_defaults(func=start_backtesting)
self.common_optimize_options(backtesting_cmd)
self.backtesting_options(backtesting_cmd)
# Add edge subcommand
edge_cmd = subparsers.add_parser('edge', help='Edge module.')
edge_cmd.set_defaults(func=edge_cli.start)
self.optimizer_shared_options(edge_cmd)
edge_cmd.set_defaults(func=start_edge)
self.common_optimize_options(edge_cmd)
self.edge_options(edge_cmd)
# Add hyperopt subcommand
hyperopt_cmd = subparsers.add_parser('hyperopt', help='Hyperopt module.')
hyperopt_cmd.set_defaults(func=hyperopt.start)
self.optimizer_shared_options(hyperopt_cmd)
hyperopt_cmd.set_defaults(func=start_hyperopt)
self.common_optimize_options(hyperopt_cmd)
self.hyperopt_options(hyperopt_cmd)
# Add list-exchanges subcommand
list_exchanges_cmd = subparsers.add_parser(
'list-exchanges',
help='Print available exchanges.'
)
list_exchanges_cmd.set_defaults(func=start_list_exchanges)
self.list_exchanges_options(list_exchanges_cmd)
@staticmethod
def parse_timerange(text: Optional[str]) -> TimeRange:
"""
@ -379,78 +422,105 @@ class Arguments(object):
return TimeRange(stype[0], stype[1], start, stop)
raise Exception('Incorrect syntax for timerange "%s"' % text)
def scripts_options(self) -> None:
@staticmethod
def check_int_positive(value: str) -> int:
try:
uint = int(value)
if uint <= 0:
raise ValueError
except ValueError:
raise argparse.ArgumentTypeError(
f"{value} is invalid for this parameter, should be a positive integer value"
)
return uint
def common_scripts_options(self, subparser: argparse.ArgumentParser = None) -> None:
"""
Parses given arguments for scripts.
Parses arguments common for scripts.
"""
self.parser.add_argument(
parser = subparser or self.parser
parser.add_argument(
'-p', '--pairs',
help='Show profits for only this pairs. Pairs are comma-separated.',
help='Show profits for only these pairs. Pairs are comma-separated.',
dest='pairs',
default=None
)
def testdata_dl_options(self) -> None:
def download_data_options(self) -> None:
"""
Parses given arguments for testdata download
Parses given arguments for testdata download script
"""
self.parser.add_argument(
parser = self.parser
parser.add_argument(
'--pairs-file',
help='File containing a list of pairs to download.',
dest='pairs_file',
default=None,
metavar='PATH',
metavar='FILE',
)
self.parser.add_argument(
'--export',
help='Export files to given dir.',
dest='export',
default=None,
metavar='PATH',
)
self.parser.add_argument(
'-c', '--config',
help='Specify configuration file (default: %(default)s). '
'Multiple --config options may be used.',
dest='config',
action='append',
type=str,
metavar='PATH',
)
self.parser.add_argument(
parser.add_argument(
'--days',
help='Download data for given number of days.',
dest='days',
type=int,
type=Arguments.check_int_positive,
metavar='INT',
default=None
)
self.parser.add_argument(
parser.add_argument(
'--exchange',
help='Exchange name (default: %(default)s). Only valid if no config is provided.',
help=f'Exchange name (default: `{constants.DEFAULT_EXCHANGE}`). '
f'Only valid if no config is provided.',
dest='exchange',
type=str,
default='bittrex'
)
self.parser.add_argument(
parser.add_argument(
'-t', '--timeframes',
help='Specify which tickers to download. Space separated list. \
Default: %(default)s.',
help=f'Specify which tickers to download. Space-separated list. '
f'Default: `{constants.DEFAULT_DOWNLOAD_TICKER_INTERVALS}`.',
choices=['1m', '3m', '5m', '15m', '30m', '1h', '2h', '4h',
'6h', '8h', '12h', '1d', '3d', '1w'],
default=['1m', '5m'],
nargs='+',
dest='timeframes',
)
self.parser.add_argument(
parser.add_argument(
'--erase',
help='Clean all existing data for the selected exchange/pairs/timeframes.',
dest='erase',
action='store_true'
)
def plot_dataframe_options(self) -> None:
"""
Parses given arguments for plot dataframe script
"""
parser = self.parser
parser.add_argument(
'--indicators1',
help='Set indicators from your strategy you want in the first row of the graph. '
'Comma-separated list. Example: `ema3,ema5`. Default: `%(default)s`.',
default='sma,ema3,ema5',
dest='indicators1',
)
parser.add_argument(
'--indicators2',
help='Set indicators from your strategy you want in the third row of the graph. '
'Comma-separated list. Example: `fastd,fastk`. Default: `%(default)s`.',
default='macd,macdsignal',
dest='indicators2',
)
parser.add_argument(
'--plot-limit',
help='Specify tick limit for plotting. Notice: too high values cause huge files. '
'Default: %(default)s.',
dest='plot_limit',
default=750,
type=int,
)
parser.add_argument(
'--trade-source',
help='Specify the source for trades (Can be DB or file (backtest file)) '
'Default: %(default)s',
dest='trade_source',
default="file",
choices=["DB", "file"]
)

View File

@ -7,13 +7,14 @@ import os
import sys
from argparse import Namespace
from logging.handlers import RotatingFileHandler
from typing import Any, Dict, List, Optional
from typing import Any, Callable, Dict, List, Optional
import ccxt
from jsonschema import Draft4Validator, validate
from jsonschema import Draft4Validator, validators
from jsonschema.exceptions import ValidationError, best_match
from freqtrade import OperationalException, constants
from freqtrade.exchange import (is_exchange_bad, is_exchange_available,
is_exchange_officially_supported, available_exchanges)
from freqtrade.misc import deep_merge_dicts
from freqtrade.state import RunMode
@ -33,6 +34,31 @@ def set_loggers(log_level: int = 0) -> None:
logging.getLogger('telegram').setLevel(logging.INFO)
def _extend_validator(validator_class):
"""
Extended validator for the Freqtrade configuration JSON Schema.
Currently it only handles defaults for subschemas.
"""
validate_properties = validator_class.VALIDATORS['properties']
def set_defaults(validator, properties, instance, schema):
for prop, subschema in properties.items():
if 'default' in subschema:
instance.setdefault(prop, subschema['default'])
for error in validate_properties(
validator, properties, instance, schema,
):
yield error
return validators.extend(
validator_class, {'properties': set_defaults}
)
FreqtradeValidator = _extend_validator(Draft4Validator)
class Configuration(object):
"""
Class to read and init the bot configuration
@ -53,6 +79,7 @@ class Configuration(object):
# Now expecting a list of config filenames here, not a string
for path in self.args.config:
logger.info('Using config: %s ...', path)
# Merge config options, overwriting old values
config = deep_merge_dicts(self._load_config_file(path), config)
@ -73,14 +100,11 @@ class Configuration(object):
# Load Common configuration
config = self._load_common_config(config)
# Load Backtesting
config = self._load_backtesting_config(config)
# Load Optimize configurations
config = self._load_optimize_config(config)
# Load Edge
config = self._load_edge_config(config)
# Load Hyperopt
config = self._load_hyperopt_config(config)
# Add plotting options if available
config = self._load_plot_config(config)
# Set runmode
if not self.runmode:
@ -98,7 +122,8 @@ class Configuration(object):
:return: configuration as dictionary
"""
try:
with open(path) as file:
# Read config from stdin if requested in the options
with open(path) if path != '-' else sys.stdin as file:
conf = json.load(file)
except FileNotFoundError:
raise OperationalException(
@ -107,12 +132,11 @@ class Configuration(object):
return conf
def _load_common_config(self, config: Dict[str, Any]) -> Dict[str, Any]:
def _load_logging_config(self, config: Dict[str, Any]) -> None:
"""
Extract information for sys.argv and load common configuration
:return: configuration as dictionary
Extract information for sys.argv and load logging configuration:
the --loglevel, --logfile options
"""
# Log level
if 'loglevel' in self.args and self.args.loglevel:
config.update({'verbosity': self.args.loglevel})
@ -138,6 +162,13 @@ class Configuration(object):
set_loggers(config['verbosity'])
logger.info('Verbosity set to %s', config['verbosity'])
def _load_common_config(self, config: Dict[str, Any]) -> Dict[str, Any]:
"""
Extract information for sys.argv and load common configuration
:return: configuration as dictionary
"""
self._load_logging_config(config)
# Support for sd_notify
if self.args.sd_notify:
config['internals'].update({'sd_notify': True})
@ -194,30 +225,53 @@ class Configuration(object):
logger.info(f'Created data directory: {datadir}')
return datadir
def _load_backtesting_config(self, config: Dict[str, Any]) -> Dict[str, Any]: # noqa: C901
def _args_to_config(self, config: Dict[str, Any], argname: str,
logstring: str, logfun: Optional[Callable] = None) -> None:
"""
Extract information for sys.argv and load Backtesting configuration
:param config: Configuration dictionary
:param argname: Argumentname in self.args - will be copied to config dict.
:param logstring: Logging String
:param logfun: logfun is applied to the configuration entry before passing
that entry to the log string using .format().
sample: logfun=len (prints the length of the found
configuration instead of the content)
"""
if argname in self.args and getattr(self.args, argname):
config.update({argname: getattr(self.args, argname)})
if logfun:
logger.info(logstring.format(logfun(config[argname])))
else:
logger.info(logstring.format(config[argname]))
def _load_datadir_config(self, config: Dict[str, Any]) -> None:
"""
Extract information for sys.argv and load datadir configuration:
the --datadir option
"""
if 'datadir' in self.args and self.args.datadir:
config.update({'datadir': self._create_datadir(config, self.args.datadir)})
else:
config.update({'datadir': self._create_datadir(config, None)})
logger.info('Using data folder: %s ...', config.get('datadir'))
def _load_optimize_config(self, config: Dict[str, Any]) -> Dict[str, Any]:
"""
Extract information for sys.argv and load Optimize configuration
:return: configuration as dictionary
"""
# If -i/--ticker-interval is used we override the configuration parameter
# (that will override the strategy configuration)
if 'ticker_interval' in self.args and self.args.ticker_interval:
config.update({'ticker_interval': self.args.ticker_interval})
logger.info('Parameter -i/--ticker-interval detected ...')
logger.info('Using ticker_interval: %s ...', config.get('ticker_interval'))
# This will override the strategy configuration
self._args_to_config(config, argname='ticker_interval',
logstring='Parameter -i/--ticker-interval detected ... '
'Using ticker_interval: {} ...')
# If -l/--live is used we add it to the configuration
if 'live' in self.args and self.args.live:
config.update({'live': True})
logger.info('Parameter -l/--live detected ...')
self._args_to_config(config, argname='live',
logstring='Parameter -l/--live detected ...')
# If --enable-position-stacking is used we add it to the configuration
if 'position_stacking' in self.args and self.args.position_stacking:
config.update({'position_stacking': True})
logger.info('Parameter --enable-position-stacking detected ...')
self._args_to_config(config, argname='position_stacking',
logstring='Parameter --enable-position-stacking detected ...')
# If --disable-max-market-positions or --max_open_trades is used we update configuration
if 'use_max_market_positions' in self.args and not self.args.use_max_market_positions:
config.update({'use_max_market_positions': False})
logger.info('Parameter --disable-max-market-positions detected ...')
@ -229,61 +283,31 @@ class Configuration(object):
else:
logger.info('Using max_open_trades: %s ...', config.get('max_open_trades'))
# If --stake_amount is used we update configuration
if 'stake_amount' in self.args and self.args.stake_amount:
config.update({'stake_amount': self.args.stake_amount})
logger.info('Parameter --stake_amount detected, overriding stake_amount to: %s ...',
config.get('stake_amount'))
self._args_to_config(config, argname='stake_amount',
logstring='Parameter --stake_amount detected, '
'overriding stake_amount to: {} ...')
# If --timerange is used we add it to the configuration
if 'timerange' in self.args and self.args.timerange:
config.update({'timerange': self.args.timerange})
logger.info('Parameter --timerange detected: %s ...', self.args.timerange)
self._args_to_config(config, argname='timerange',
logstring='Parameter --timerange detected: {} ...')
# If --datadir is used we add it to the configuration
if 'datadir' in self.args and self.args.datadir:
config.update({'datadir': self._create_datadir(config, self.args.datadir)})
else:
config.update({'datadir': self._create_datadir(config, None)})
logger.info('Using data folder: %s ...', config.get('datadir'))
self._load_datadir_config(config)
# If -r/--refresh-pairs-cached is used we add it to the configuration
if 'refresh_pairs' in self.args and self.args.refresh_pairs:
config.update({'refresh_pairs': True})
logger.info('Parameter -r/--refresh-pairs-cached detected ...')
self._args_to_config(config, argname='refresh_pairs',
logstring='Parameter -r/--refresh-pairs-cached detected ...')
if 'strategy_list' in self.args and self.args.strategy_list:
config.update({'strategy_list': self.args.strategy_list})
logger.info('Using strategy list of %s Strategies', len(self.args.strategy_list))
self._args_to_config(config, argname='strategy_list',
logstring='Using strategy list of {} Strategies', logfun=len)
if 'ticker_interval' in self.args and self.args.ticker_interval:
config.update({'ticker_interval': self.args.ticker_interval})
logger.info('Overriding ticker interval with Command line argument')
self._args_to_config(config, argname='ticker_interval',
logstring='Overriding ticker interval with Command line argument')
# If --export is used we add it to the configuration
if 'export' in self.args and self.args.export:
config.update({'export': self.args.export})
logger.info('Parameter --export detected: %s ...', self.args.export)
self._args_to_config(config, argname='export',
logstring='Parameter --export detected: {} ...')
# If --export-filename is used we add it to the configuration
if 'export' in config and 'exportfilename' in self.args and self.args.exportfilename:
config.update({'exportfilename': self.args.exportfilename})
logger.info('Storing backtest results to %s ...', self.args.exportfilename)
self._args_to_config(config, argname='exportfilename',
logstring='Storing backtest results to {} ...')
return config
def _load_edge_config(self, config: Dict[str, Any]) -> Dict[str, Any]:
"""
Extract information for sys.argv and load Edge configuration
:return: configuration as dictionary
"""
# If --timerange is used we add it to the configuration
if 'timerange' in self.args and self.args.timerange:
config.update({'timerange': self.args.timerange})
logger.info('Parameter --timerange detected: %s ...', self.args.timerange)
# If --timerange is used we add it to the configuration
# Edge section:
if 'stoploss_range' in self.args and self.args.stoploss_range:
txt_range = eval(self.args.stoploss_range)
config['edge'].update({'stoploss_range_min': txt_range[0]})
@ -291,34 +315,51 @@ class Configuration(object):
config['edge'].update({'stoploss_range_step': txt_range[2]})
logger.info('Parameter --stoplosses detected: %s ...', self.args.stoploss_range)
# If -r/--refresh-pairs-cached is used we add it to the configuration
if 'refresh_pairs' in self.args and self.args.refresh_pairs:
config.update({'refresh_pairs': True})
logger.info('Parameter -r/--refresh-pairs-cached detected ...')
# Hyperopt section
self._args_to_config(config, argname='hyperopt',
logstring='Using Hyperopt file {}')
self._args_to_config(config, argname='epochs',
logstring='Parameter --epochs detected ... '
'Will run Hyperopt with for {} epochs ...'
)
self._args_to_config(config, argname='spaces',
logstring='Parameter -s/--spaces detected: {}')
self._args_to_config(config, argname='print_all',
logstring='Parameter --print-all detected ...')
self._args_to_config(config, argname='hyperopt_jobs',
logstring='Parameter -j/--job-workers detected: {}')
self._args_to_config(config, argname='hyperopt_random_state',
logstring='Parameter --random-state detected: {}')
self._args_to_config(config, argname='hyperopt_min_trades',
logstring='Parameter --min-trades detected: {}')
return config
def _load_hyperopt_config(self, config: Dict[str, Any]) -> Dict[str, Any]:
def _load_plot_config(self, config: Dict[str, Any]) -> Dict[str, Any]:
"""
Extract information for sys.argv and load Hyperopt configuration
Extract information for sys.argv Plotting configuration
:return: configuration as dictionary
"""
if "hyperopt" in self.args:
# Add the hyperopt file to use
config.update({'hyperopt': self.args.hyperopt})
self._args_to_config(config, argname='pairs',
logstring='Using pairs {}')
# If --epochs is used we add it to the configuration
if 'epochs' in self.args and self.args.epochs:
config.update({'epochs': self.args.epochs})
logger.info('Parameter --epochs detected ...')
logger.info('Will run Hyperopt with for %s epochs ...', config.get('epochs'))
self._args_to_config(config, argname='indicators1',
logstring='Using indicators1: {}')
# If --spaces is used we add it to the configuration
if 'spaces' in self.args and self.args.spaces:
config.update({'spaces': self.args.spaces})
logger.info('Parameter -s/--spaces detected: %s', config.get('spaces'))
self._args_to_config(config, argname='indicators2',
logstring='Using indicators2: {}')
self._args_to_config(config, argname='plot_limit',
logstring='Limiting plot to: {}')
self._args_to_config(config, argname='trade_source',
logstring='Using trades from: {}')
return config
def _validate_config_schema(self, conf: Dict[str, Any]) -> Dict[str, Any]:
@ -328,7 +369,7 @@ class Configuration(object):
:return: Returns the config if valid, otherwise throw an exception
"""
try:
validate(conf, constants.CONF_SCHEMA, Draft4Validator)
FreqtradeValidator(constants.CONF_SCHEMA).validate(conf)
return conf
except ValidationError as exception:
logger.critical(
@ -378,21 +419,40 @@ class Configuration(object):
return self.config
def check_exchange(self, config: Dict[str, Any]) -> bool:
def check_exchange(self, config: Dict[str, Any], check_for_bad: bool = True) -> bool:
"""
Check if the exchange name in the config file is supported by Freqtrade
:return: True or raised an exception if the exchange if not supported
:param check_for_bad: if True, check the exchange against the list of known 'bad'
exchanges
:return: False if exchange is 'bad', i.e. is known to work with the bot with
critical issues or does not work at all, crashes, etc. True otherwise.
raises an exception if the exchange if not supported by ccxt
and thus is not known for the Freqtrade at all.
"""
logger.info("Checking exchange...")
exchange = config.get('exchange', {}).get('name').lower()
if exchange not in ccxt.exchanges:
exception_msg = f'Exchange "{exchange}" not supported.\n' \
f'The following exchanges are supported: {", ".join(ccxt.exchanges)}'
logger.critical(exception_msg)
if not is_exchange_available(exchange):
raise OperationalException(
exception_msg
f'Exchange "{exchange}" is not supported by ccxt '
f'and therefore not available for the bot.\n'
f'The following exchanges are supported by ccxt: '
f'{", ".join(available_exchanges())}'
)
logger.debug('Exchange "%s" supported', exchange)
if check_for_bad and is_exchange_bad(exchange):
logger.warning(f'Exchange "{exchange}" is known to not work with the bot yet. '
f'Use it only for development and testing purposes.')
return False
if is_exchange_officially_supported(exchange):
logger.info(f'Exchange "{exchange}" is officially supported '
f'by the Freqtrade development team.')
else:
logger.warning(f'Exchange "{exchange}" is supported by ccxt '
f'and therefore available for the bot but not officially supported '
f'by the Freqtrade development team. '
f'It may work flawlessly (please report back) or have serious issues. '
f'Use it at your own discretion.')
return True

View File

@ -4,6 +4,7 @@
bot constants
"""
DEFAULT_CONFIG = 'config.json'
DEFAULT_EXCHANGE = 'bittrex'
DYNAMIC_WHITELIST = 20 # pairs
PROCESS_THROTTLE_SECS = 5 # sec
DEFAULT_TICKER_INTERVAL = 5 # min
@ -21,6 +22,7 @@ ORDERTYPE_POSSIBILITIES = ['limit', 'market']
ORDERTIF_POSSIBILITIES = ['gtc', 'fok', 'ioc']
AVAILABLE_PAIRLISTS = ['StaticPairList', 'VolumePairList']
DRY_RUN_WALLET = 999.9
DEFAULT_DOWNLOAD_TICKER_INTERVALS = '1m 5m'
TICKER_INTERVALS = [
'1m', '3m', '5m', '15m', '30m',
@ -156,6 +158,21 @@ CONF_SCHEMA = {
'webhookstatus': {'type': 'object'},
},
},
'api_server': {
'type': 'object',
'properties': {
'enabled': {'type': 'boolean'},
'listen_ip_address': {'format': 'ipv4'},
'listen_port': {
'type': 'integer',
"minimum": 1024,
"maximum": 65535
},
'username': {'type': 'string'},
'password': {'type': 'string'},
},
'required': ['enabled', 'listen_ip_address', 'listen_port', 'username', 'password']
},
'db_url': {'type': 'string'},
'initial_state': {'type': 'string', 'enum': ['running', 'stopped']},
'forcebuy_enable': {'type': 'boolean'},
@ -173,10 +190,10 @@ CONF_SCHEMA = {
'type': 'object',
'properties': {
'name': {'type': 'string'},
'sandbox': {'type': 'boolean'},
'key': {'type': 'string'},
'secret': {'type': 'string'},
'password': {'type': 'string'},
'sandbox': {'type': 'boolean', 'default': False},
'key': {'type': 'string', 'default': ''},
'secret': {'type': 'string', 'default': ''},
'password': {'type': 'string', 'default': ''},
'uid': {'type': 'string'},
'pair_whitelist': {
'type': 'array',
@ -199,7 +216,7 @@ CONF_SCHEMA = {
'ccxt_config': {'type': 'object'},
'ccxt_async_config': {'type': 'object'}
},
'required': ['name', 'key', 'secret', 'pair_whitelist']
'required': ['name', 'pair_whitelist']
},
'edge': {
'type': 'object',

View File

@ -1,12 +1,18 @@
"""
Helpers when analyzing backtest data
"""
import logging
from pathlib import Path
import numpy as np
import pandas as pd
import pytz
from freqtrade import persistence
from freqtrade.misc import json_load
from freqtrade.persistence import Trade
logger = logging.getLogger(__name__)
# must align with columns in backtest.py
BT_DATA_COLUMNS = ["pair", "profitperc", "open_time", "close_time", "index", "duration",
@ -17,7 +23,7 @@ def load_backtest_data(filename) -> pd.DataFrame:
"""
Load backtest data file.
:param filename: pathlib.Path object, or string pointing to the file.
:return a dataframe with the analysis results
:return: a dataframe with the analysis results
"""
if isinstance(filename, str):
filename = Path(filename)
@ -65,3 +71,41 @@ def evaluate_result_multi(results: pd.DataFrame, freq: str, max_open_trades: int
df2 = df2.set_index('date')
df_final = df2.resample(freq)[['pair']].count()
return df_final[df_final['pair'] > max_open_trades]
def load_trades_from_db(db_url: str) -> pd.DataFrame:
"""
Load trades from a DB (using dburl)
:param db_url: Sqlite url (default format sqlite:///tradesv3.dry-run.sqlite)
:return: Dataframe containing Trades
"""
trades: pd.DataFrame = pd.DataFrame([], columns=BT_DATA_COLUMNS)
persistence.init(db_url, clean_open_orders=False)
columns = ["pair", "profit", "open_time", "close_time",
"open_rate", "close_rate", "duration", "sell_reason",
"max_rate", "min_rate"]
trades = pd.DataFrame([(t.pair, t.calc_profit(),
t.open_date.replace(tzinfo=pytz.UTC),
t.close_date.replace(tzinfo=pytz.UTC) if t.close_date else None,
t.open_rate, t.close_rate,
t.close_date.timestamp() - t.open_date.timestamp()
if t.close_date else None,
t.sell_reason,
t.max_rate,
t.min_rate,
)
for t in Trade.query.all()],
columns=columns)
return trades
def extract_trades_of_period(dataframe: pd.DataFrame, trades: pd.DataFrame) -> pd.DataFrame:
"""
Compare trades and backtested pair DataFrames to get trades performed on backtested period
:return: the DataFrame of a trades of period
"""
trades = trades.loc[(trades['open_time'] >= dataframe.iloc[0]['date']) &
(trades['close_time'] <= dataframe.iloc[-1]['date'])]
return trades

View File

@ -2,22 +2,25 @@
Functions to convert data from one format to another
"""
import logging
import pandas as pd
from pandas import DataFrame, to_datetime
from freqtrade.misc import timeframe_to_minutes
logger = logging.getLogger(__name__)
def parse_ticker_dataframe(ticker: list, ticker_interval: str,
fill_missing: bool = True) -> DataFrame:
def parse_ticker_dataframe(ticker: list, ticker_interval: str, pair: str, *,
fill_missing: bool = True,
drop_incomplete: bool = True) -> DataFrame:
"""
Converts a ticker-list (format ccxt.fetch_ohlcv) to a Dataframe
:param ticker: ticker list, as returned by exchange.async_get_candle_history
:param ticker_interval: ticker_interval (e.g. 5m). Used to fill up eventual missing data
:param pair: Pair this data is for (used to warn if fillup was necessary)
:param fill_missing: fill up missing candles with 0 candles
(see ohlcv_fill_up_missing_data for details)
:param drop_incomplete: Drop the last candle of the dataframe, assuming it's incomplete
:return: DataFrame
"""
logger.debug("Parsing tickerlist to dataframe")
@ -43,21 +46,25 @@ def parse_ticker_dataframe(ticker: list, ticker_interval: str,
'close': 'last',
'volume': 'max',
})
frame.drop(frame.tail(1).index, inplace=True) # eliminate partial candle
logger.debug('Dropping last candle')
# eliminate partial candle
if drop_incomplete:
frame.drop(frame.tail(1).index, inplace=True)
logger.debug('Dropping last candle')
if fill_missing:
return ohlcv_fill_up_missing_data(frame, ticker_interval)
return ohlcv_fill_up_missing_data(frame, ticker_interval, pair)
else:
return frame
def ohlcv_fill_up_missing_data(dataframe: DataFrame, ticker_interval: str) -> DataFrame:
def ohlcv_fill_up_missing_data(dataframe: DataFrame, ticker_interval: str, pair: str) -> DataFrame:
"""
Fills up missing data with 0 volume rows,
using the previous close as price for "open", "high" "low" and "close", volume is set to 0
"""
from freqtrade.exchange import timeframe_to_minutes
ohlc_dict = {
'open': 'first',
'high': 'max',
@ -78,7 +85,10 @@ def ohlcv_fill_up_missing_data(dataframe: DataFrame, ticker_interval: str) -> Da
'low': df['close'],
})
df.reset_index(inplace=True)
logger.debug(f"Missing data fillup: before: {len(dataframe)} - after: {len(df)}")
len_before = len(dataframe)
len_after = len(df)
if len_before != len_after:
logger.info(f"Missing data fillup for {pair}: before: {len_before} - after: {len_after}")
return df

View File

@ -85,8 +85,7 @@ class DataProvider(object):
"""
return latest orderbook data
"""
# TODO: Implement me
pass
return self._exchange.get_order_book(pair, max)
@property
def runmode(self) -> RunMode:

View File

@ -1,23 +1,24 @@
"""
Handle historic data (ohlcv).
includes:
Includes:
* load data for a pair (or a list of pairs) from disk
* download data from exchange and store to disk
"""
import logging
import operator
from datetime import datetime
from pathlib import Path
from typing import Optional, List, Dict, Tuple, Any
from typing import Any, Dict, List, Optional, Tuple
import arrow
from pandas import DataFrame
from freqtrade import misc, OperationalException
from freqtrade import OperationalException, misc
from freqtrade.arguments import TimeRange
from freqtrade.data.converter import parse_ticker_dataframe
from freqtrade.exchange import Exchange
from freqtrade.misc import timeframe_to_minutes
from freqtrade.exchange import Exchange, timeframe_to_minutes
logger = logging.getLogger(__name__)
@ -62,14 +63,10 @@ def load_tickerdata_file(
timerange: Optional[TimeRange] = None) -> Optional[list]:
"""
Load a pair from file, either .json.gz or .json
:return tickerlist or None if unsuccesful
:return: tickerlist or None if unsuccesful
"""
path = make_testdata_path(datadir)
pair_s = pair.replace('/', '_')
file = path.joinpath(f'{pair_s}-{ticker_interval}.json')
pairdata = misc.file_load_json(file)
filename = pair_data_filename(datadir, pair, ticker_interval)
pairdata = misc.file_load_json(filename)
if not pairdata:
return None
@ -84,20 +81,25 @@ def load_pair_history(pair: str,
timerange: TimeRange = TimeRange(None, None, 0, 0),
refresh_pairs: bool = False,
exchange: Optional[Exchange] = None,
fill_up_missing: bool = True
fill_up_missing: bool = True,
drop_incomplete: bool = True
) -> DataFrame:
"""
Loads cached ticker history for the given pair.
:param pair: Pair to load data for
:param ticker_interval: Ticker-interval (e.g. "5m")
:param datadir: Path to the data storage location.
:param timerange: Limit data to be loaded to this timerange
:param refresh_pairs: Refresh pairs from exchange.
(Note: Requires exchange to be passed as well.)
:param exchange: Exchange object (needed when using "refresh_pairs")
:param fill_up_missing: Fill missing values with "No action"-candles
:param drop_incomplete: Drop last candle assuming it may be incomplete.
:return: DataFrame with ohlcv data
"""
# If the user force the refresh of pairs
# The user forced the refresh of pairs
if refresh_pairs:
if not exchange:
raise OperationalException("Exchange needs to be initialized when "
"calling load_data with refresh_pairs=True")
logger.info('Download data for pair and store them in %s', datadir)
download_pair_history(datadir=datadir,
exchange=exchange,
pair=pair,
@ -114,11 +116,15 @@ def load_pair_history(pair: str,
logger.warning('Missing data at end for pair %s, data ends at %s',
pair,
arrow.get(pairdata[-1][0] // 1000).strftime('%Y-%m-%d %H:%M:%S'))
return parse_ticker_dataframe(pairdata, ticker_interval, fill_up_missing)
return parse_ticker_dataframe(pairdata, ticker_interval, pair=pair,
fill_missing=fill_up_missing,
drop_incomplete=drop_incomplete)
else:
logger.warning('No data for pair: "%s", Interval: %s. '
'Use --refresh-pairs-cached to download the data',
pair, ticker_interval)
logger.warning(
f'No history data for pair: "{pair}", interval: {ticker_interval}. '
'Use --refresh-pairs-cached option or download_backtest_data.py '
'script to download the data'
)
return None
@ -128,21 +134,34 @@ def load_data(datadir: Optional[Path],
refresh_pairs: bool = False,
exchange: Optional[Exchange] = None,
timerange: TimeRange = TimeRange(None, None, 0, 0),
fill_up_missing: bool = True) -> Dict[str, DataFrame]:
fill_up_missing: bool = True,
live: bool = False
) -> Dict[str, DataFrame]:
"""
Loads ticker history data for a list of pairs the given parameters
:return: dict(<pair>:<tickerlist>)
"""
result = {}
result: Dict[str, DataFrame] = {}
if live:
if exchange:
logger.info('Live: Downloading data for all defined pairs ...')
exchange.refresh_latest_ohlcv([(pair, ticker_interval) for pair in pairs])
result = {key[0]: value for key, value in exchange._klines.items() if value is not None}
else:
raise OperationalException(
"Exchange needs to be initialized when using live data."
)
else:
logger.info('Using local backtesting data ...')
for pair in pairs:
hist = load_pair_history(pair=pair, ticker_interval=ticker_interval,
datadir=datadir, timerange=timerange,
refresh_pairs=refresh_pairs,
exchange=exchange,
fill_up_missing=fill_up_missing)
if hist is not None:
result[pair] = hist
for pair in pairs:
hist = load_pair_history(pair=pair, ticker_interval=ticker_interval,
datadir=datadir, timerange=timerange,
refresh_pairs=refresh_pairs,
exchange=exchange,
fill_up_missing=fill_up_missing)
if hist is not None:
result[pair] = hist
return result
@ -151,6 +170,13 @@ def make_testdata_path(datadir: Optional[Path]) -> Path:
return datadir or (Path(__file__).parent.parent / "tests" / "testdata").resolve()
def pair_data_filename(datadir: Optional[Path], pair: str, ticker_interval: str) -> Path:
path = make_testdata_path(datadir)
pair_s = pair.replace("/", "_")
filename = path.joinpath(f'{pair_s}-{ticker_interval}.json')
return filename
def load_cached_data_for_updating(filename: Path, ticker_interval: str,
timerange: Optional[TimeRange]) -> Tuple[List[Any],
Optional[int]]:
@ -190,7 +216,7 @@ def load_cached_data_for_updating(filename: Path, ticker_interval: str,
def download_pair_history(datadir: Optional[Path],
exchange: Exchange,
exchange: Optional[Exchange],
pair: str,
ticker_interval: str = '5m',
timerange: Optional[TimeRange] = None) -> bool:
@ -201,18 +227,24 @@ def download_pair_history(datadir: Optional[Path],
the full data will be redownloaded
Based on @Rybolov work: https://github.com/rybolov/freqtrade-data
:param pair: pair to download
:param ticker_interval: ticker interval
:param timerange: range of time to download
:return: bool with success state
"""
try:
path = make_testdata_path(datadir)
filepair = pair.replace("/", "_")
filename = path.joinpath(f'{filepair}-{ticker_interval}.json')
if not exchange:
raise OperationalException(
"Exchange needs to be initialized when downloading pair history data"
)
logger.info('Download the pair: "%s", Interval: %s', pair, ticker_interval)
try:
filename = pair_data_filename(datadir, pair, ticker_interval)
logger.info(
f'Download history data for pair: "{pair}", interval: {ticker_interval} '
f'and store in {datadir}.'
)
data, since_ms = load_cached_data_for_updating(filename, ticker_interval, timerange)
@ -231,7 +263,46 @@ def download_pair_history(datadir: Optional[Path],
misc.file_dump_json(filename, data)
return True
except BaseException:
logger.info('Failed to download the pair: "%s", Interval: %s',
pair, ticker_interval)
except Exception as e:
logger.error(
f'Failed to download history data for pair: "{pair}", interval: {ticker_interval}. '
f'Error: {e}'
)
return False
def get_timeframe(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]:
"""
Get the maximum timeframe for the given backtest data
:param data: dictionary with preprocessed backtesting data
:return: tuple containing min_date, max_date
"""
timeframe = [
(arrow.get(frame['date'].min()), arrow.get(frame['date'].max()))
for frame in data.values()
]
return min(timeframe, key=operator.itemgetter(0))[0], \
max(timeframe, key=operator.itemgetter(1))[1]
def validate_backtest_data(data: DataFrame, pair: str, min_date: datetime,
max_date: datetime, ticker_interval_mins: int) -> bool:
"""
Validates preprocessed backtesting data for missing values and shows warnings about it that.
:param data: preprocessed backtesting data (as DataFrame)
:param pair: pair used for log output.
:param min_date: start-date of the data
:param max_date: end-date of the data
:param ticker_interval_mins: ticker interval in minutes
"""
# total difference in minutes / interval-minutes
expected_frames = int((max_date - min_date).total_seconds() // 60 // ticker_interval_mins)
found_missing = False
dflen = len(data)
if dflen < expected_frames:
found_missing = True
logger.warning("%s has missing frames: expected %s, got %s, that's %s missing values",
pair, expected_frames, dflen, expected_frames - dflen)
return found_missing

View File

@ -13,7 +13,6 @@ from freqtrade import constants, OperationalException
from freqtrade.arguments import Arguments
from freqtrade.arguments import TimeRange
from freqtrade.data import history
from freqtrade.optimize import get_timeframe
from freqtrade.strategy.interface import SellType
@ -47,11 +46,6 @@ class Edge():
self.config = config
self.exchange = exchange
self.strategy = strategy
self.ticker_interval = self.strategy.ticker_interval
self.tickerdata_to_dataframe = self.strategy.tickerdata_to_dataframe
self.get_timeframe = get_timeframe
self.advise_sell = self.strategy.advise_sell
self.advise_buy = self.strategy.advise_buy
self.edge_config = self.config.get('edge', {})
self._cached_pairs: Dict[str, Any] = {} # Keeps a list of pairs
@ -102,7 +96,7 @@ class Edge():
data = history.load_data(
datadir=Path(self.config['datadir']) if self.config.get('datadir') else None,
pairs=pairs,
ticker_interval=self.ticker_interval,
ticker_interval=self.strategy.ticker_interval,
refresh_pairs=self._refresh_pairs,
exchange=self.exchange,
timerange=self._timerange
@ -114,10 +108,10 @@ class Edge():
logger.critical("No data found. Edge is stopped ...")
return False
preprocessed = self.tickerdata_to_dataframe(data)
preprocessed = self.strategy.tickerdata_to_dataframe(data)
# Print timeframe
min_date, max_date = self.get_timeframe(preprocessed)
min_date, max_date = history.get_timeframe(preprocessed)
logger.info(
'Measuring data from %s up to %s (%s days) ...',
min_date.isoformat(),
@ -132,13 +126,14 @@ class Edge():
pair_data = pair_data.sort_values(by=['date'])
pair_data = pair_data.reset_index(drop=True)
ticker_data = self.advise_sell(
self.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy()
ticker_data = self.strategy.advise_sell(
self.strategy.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy()
trades += self._find_trades_for_stoploss_range(ticker_data, pair, self._stoploss_range)
# If no trade found then exit
if len(trades) == 0:
logger.info("No trades found.")
return False
# Fill missing, calculable columns, profit, duration , abs etc.

View File

@ -1,3 +1,10 @@
from freqtrade.exchange.exchange import Exchange # noqa: F401
from freqtrade.exchange.exchange import (is_exchange_bad, # noqa: F401
is_exchange_available,
is_exchange_officially_supported,
available_exchanges)
from freqtrade.exchange.exchange import (timeframe_to_seconds, # noqa: F401
timeframe_to_minutes,
timeframe_to_msecs)
from freqtrade.exchange.kraken import Kraken # noqa: F401
from freqtrade.exchange.binance import Binance # noqa: F401

View File

@ -1,23 +1,25 @@
# pragma pylint: disable=W0603
""" Cryptocurrency Exchanges support """
import logging
"""
Cryptocurrency Exchanges support
"""
import asyncio
import inspect
from random import randint
from typing import List, Dict, Tuple, Any, Optional
import logging
from copy import deepcopy
from datetime import datetime
from math import floor, ceil
from math import ceil, floor
from random import randint
from typing import Any, Dict, List, Optional, Tuple
import arrow
import asyncio
import ccxt
import ccxt.async_support as ccxt_async
from pandas import DataFrame
from freqtrade import (constants, DependencyException, OperationalException,
TemporaryError, InvalidOrderException)
from freqtrade import (DependencyException, InvalidOrderException,
OperationalException, TemporaryError, constants)
from freqtrade.data.converter import parse_ticker_dataframe
from freqtrade.misc import timeframe_to_seconds, timeframe_to_msecs
from freqtrade.misc import deep_merge_dicts
logger = logging.getLogger(__name__)
@ -67,12 +69,15 @@ class Exchange(object):
_params: Dict = {}
# Dict to specify which options each exchange implements
# TODO: this should be merged with attributes from subclasses
# To avoid having to copy/paste this to all subclasses.
_ft_has: Dict = {
# This defines defaults, which can be selectively overridden by subclasses using _ft_has
# or by specifying them in the configuration.
_ft_has_default: Dict = {
"stoploss_on_exchange": False,
"order_time_in_force": ["gtc"],
"ohlcv_candle_limit": 500,
"ohlcv_partial_candle": True,
}
_ft_has: Dict = {}
def __init__(self, config: dict) -> None:
"""
@ -99,6 +104,19 @@ class Exchange(object):
logger.info('Instance is running with dry_run enabled')
exchange_config = config['exchange']
# Deep merge ft_has with default ft_has options
self._ft_has = deep_merge_dicts(self._ft_has, deepcopy(self._ft_has_default))
if exchange_config.get("_ft_has_params"):
self._ft_has = deep_merge_dicts(exchange_config.get("_ft_has_params"),
self._ft_has)
logger.info("Overriding exchange._ft_has with config params, result: %s", self._ft_has)
# Assign this directly for easy access
self._ohlcv_candle_limit = self._ft_has['ohlcv_candle_limit']
self._ohlcv_partial_candle = self._ft_has['ohlcv_partial_candle']
# Initialize ccxt objects
self._api: ccxt.Exchange = self._init_ccxt(
exchange_config, ccxt_kwargs=exchange_config.get('ccxt_config'))
self._api_async: ccxt_async.Exchange = self._init_ccxt(
@ -138,8 +156,8 @@ class Exchange(object):
# Find matching class for the given exchange name
name = exchange_config['name']
if name not in ccxt_module.exchanges:
raise OperationalException(f'Exchange {name} is not supported')
if not is_exchange_available(name, ccxt_module):
raise OperationalException(f'Exchange {name} is not supported by ccxt')
ex_config = {
'apiKey': exchange_config.get('key'),
@ -221,8 +239,11 @@ class Exchange(object):
> arrow.utcnow().timestamp):
return None
logger.debug("Performing scheduled market reload..")
self._api.load_markets(reload=True)
self._last_markets_refresh = arrow.utcnow().timestamp
try:
self._api.load_markets(reload=True)
self._last_markets_refresh = arrow.utcnow().timestamp
except ccxt.BaseError:
logger.exception("Could not reload markets.")
def validate_pairs(self, pairs: List[str]) -> None:
"""
@ -502,11 +523,13 @@ class Exchange(object):
async def _async_get_history(self, pair: str,
ticker_interval: str,
since_ms: int) -> List:
# Assume exchange returns 500 candles
_LIMIT = 500
one_call = timeframe_to_msecs(ticker_interval) * _LIMIT
logger.debug("one_call: %s msecs", one_call)
one_call = timeframe_to_msecs(ticker_interval) * self._ohlcv_candle_limit
logger.debug(
"one_call: %s msecs (%s)",
one_call,
arrow.utcnow().shift(seconds=one_call // 1000).humanize(only_distance=True)
)
input_coroutines = [self._async_get_candle_history(
pair, ticker_interval, since) for since in
range(since_ms, arrow.utcnow().timestamp * 1000, one_call)]
@ -537,7 +560,10 @@ class Exchange(object):
or self._now_is_time_to_refresh(pair, ticker_interval)):
input_coroutines.append(self._async_get_candle_history(pair, ticker_interval))
else:
logger.debug("Using cached ohlcv data for %s, %s ...", pair, ticker_interval)
logger.debug(
"Using cached ohlcv data for pair %s, interval %s ...",
pair, ticker_interval
)
tickers = asyncio.get_event_loop().run_until_complete(
asyncio.gather(*input_coroutines, return_exceptions=True))
@ -555,7 +581,8 @@ class Exchange(object):
self._pairs_last_refresh_time[(pair, ticker_interval)] = ticks[-1][0] // 1000
# keeping parsed dataframe in cache
self._klines[(pair, ticker_interval)] = parse_ticker_dataframe(
ticks, ticker_interval, fill_missing=True)
ticks, ticker_interval, pair=pair, fill_missing=True,
drop_incomplete=self._ohlcv_partial_candle)
return tickers
def _now_is_time_to_refresh(self, pair: str, ticker_interval: str) -> bool:
@ -574,7 +601,11 @@ class Exchange(object):
"""
try:
# fetch ohlcv asynchronously
logger.debug("fetching %s, %s since %s ...", pair, ticker_interval, since_ms)
s = '(' + arrow.get(since_ms // 1000).isoformat() + ') ' if since_ms is not None else ''
logger.debug(
"Fetching pair %s, interval %s, since %s %s...",
pair, ticker_interval, since_ms, s
)
data = await self._api_async.fetch_ohlcv(pair, timeframe=ticker_interval,
since=since_ms)
@ -589,7 +620,7 @@ class Exchange(object):
except IndexError:
logger.exception("Error loading %s. Result was %s.", pair, data)
return pair, ticker_interval, []
logger.debug("done fetching %s, %s ...", pair, ticker_interval)
logger.debug("Done fetching pair %s, interval %s ...", pair, ticker_interval)
return pair, ticker_interval, data
except ccxt.NotSupported as e:
@ -689,3 +720,42 @@ class Exchange(object):
f'Could not get fee info due to {e.__class__.__name__}. Message: {e}')
except ccxt.BaseError as e:
raise OperationalException(e)
def is_exchange_bad(exchange: str) -> bool:
return exchange in ['bitmex']
def is_exchange_available(exchange: str, ccxt_module=None) -> bool:
return exchange in available_exchanges(ccxt_module)
def is_exchange_officially_supported(exchange: str) -> bool:
return exchange in ['bittrex', 'binance']
def available_exchanges(ccxt_module=None) -> List[str]:
return ccxt_module.exchanges if ccxt_module is not None else ccxt.exchanges
def timeframe_to_seconds(ticker_interval: str) -> int:
"""
Translates the timeframe interval value written in the human readable
form ('1m', '5m', '1h', '1d', '1w', etc.) to the number
of seconds for one timeframe interval.
"""
return ccxt.Exchange.parse_timeframe(ticker_interval)
def timeframe_to_minutes(ticker_interval: str) -> int:
"""
Same as above, but returns minutes.
"""
return ccxt.Exchange.parse_timeframe(ticker_interval) // 60
def timeframe_to_msecs(ticker_interval: str) -> int:
"""
Same as above, but returns milliseconds.
"""
return ccxt.Exchange.parse_timeframe(ticker_interval) * 1000

View File

@ -16,7 +16,7 @@ from freqtrade import (DependencyException, OperationalException, InvalidOrderEx
from freqtrade.data.converter import order_book_to_dataframe
from freqtrade.data.dataprovider import DataProvider
from freqtrade.edge import Edge
from freqtrade.misc import timeframe_to_minutes
from freqtrade.exchange import timeframe_to_minutes
from freqtrade.persistence import Trade
from freqtrade.rpc import RPCManager, RPCMessageType
from freqtrade.resolvers import ExchangeResolver, StrategyResolver, PairListResolver
@ -53,8 +53,7 @@ class FreqtradeBot(object):
self.rpc: RPCManager = RPCManager(self)
exchange_name = self.config.get('exchange', {}).get('name', 'bittrex').title()
self.exchange = ExchangeResolver(exchange_name, self.config).exchange
self.exchange = ExchangeResolver(self.config['exchange']['name'], self.config).exchange
self.wallets = Wallets(self.config, self.exchange)
self.dataprovider = DataProvider(self.config, self.exchange)
@ -73,7 +72,8 @@ class FreqtradeBot(object):
self.active_pair_whitelist: List[str] = self.config['exchange']['pair_whitelist']
persistence.init(self.config)
persistence.init(self.config.get('db_url', None),
clean_open_orders=self.config.get('dry_run', False))
# Set initial bot state from config
initial_state = self.config.get('initial_state')
@ -89,6 +89,16 @@ class FreqtradeBot(object):
self.rpc.cleanup()
persistence.cleanup()
def startup(self) -> None:
"""
Called on startup and after reloading the bot - triggers notifications and
performs startup tasks
"""
self.rpc.startup_messages(self.config, self.pairlists)
if not self.edge:
# Adjust stoploss if it was changed
Trade.stoploss_reinitialization(self.strategy.stoploss)
def process(self) -> bool:
"""
Queries the persistence layer for open trades and handles them,
@ -194,19 +204,19 @@ class FreqtradeBot(object):
else:
stake_amount = self.config['stake_amount']
avaliable_amount = self.wallets.get_free(self.config['stake_currency'])
available_amount = self.wallets.get_free(self.config['stake_currency'])
if stake_amount == constants.UNLIMITED_STAKE_AMOUNT:
open_trades = len(Trade.get_open_trades())
if open_trades >= self.config['max_open_trades']:
logger.warning('Can\'t open a new trade: max number of trades is reached')
return None
return avaliable_amount / (self.config['max_open_trades'] - open_trades)
return available_amount / (self.config['max_open_trades'] - open_trades)
# Check if stake_amount is fulfilled
if avaliable_amount < stake_amount:
if available_amount < stake_amount:
raise DependencyException(
f"Available balance({avaliable_amount} {self.config['stake_currency']}) is "
f"Available balance({available_amount} {self.config['stake_currency']}) is "
f"lower than stake amount({stake_amount} {self.config['stake_currency']})"
)
@ -334,8 +344,8 @@ class FreqtradeBot(object):
return False
amount = stake_amount / buy_limit_requested
order = self.exchange.buy(pair=pair, ordertype=self.strategy.order_types['buy'],
order_type = self.strategy.order_types['buy']
order = self.exchange.buy(pair=pair, ordertype=order_type,
amount=amount, rate=buy_limit_requested,
time_in_force=time_in_force)
order_id = order['id']
@ -345,7 +355,6 @@ class FreqtradeBot(object):
buy_limit_filled_price = buy_limit_requested
if order_status == 'expired' or order_status == 'rejected':
order_type = self.strategy.order_types['buy']
order_tif = self.strategy.order_time_in_force['buy']
# return false if the order is not filled
@ -379,6 +388,7 @@ class FreqtradeBot(object):
'exchange': self.exchange.name.capitalize(),
'pair': pair_s,
'limit': buy_limit_filled_price,
'order_type': order_type,
'stake_amount': stake_amount,
'stake_currency': stake_currency,
'fiat_currency': fiat_currency
@ -460,7 +470,7 @@ class FreqtradeBot(object):
def get_real_amount(self, trade: Trade, order: Dict) -> float:
"""
Get real amount for the trade
Necessary for self.exchanges which charge fees in base currency (e.g. binance)
Necessary for exchanges which charge fees in base currency (e.g. binance)
"""
order_amount = order['amount']
# Only run for closed orders
@ -522,6 +532,10 @@ class FreqtradeBot(object):
trade.update(order)
# Updating wallets when order is closed
if not trade.is_open:
self.wallets.update()
def get_sell_rate(self, pair: str, refresh: bool) -> float:
"""
Get sell rate - either using get-ticker bid or first bid based on orderbook
@ -676,13 +690,22 @@ class FreqtradeBot(object):
# cancelling the current stoploss on exchange first
logger.info('Trailing stoploss: cancelling current stoploss on exchange (id:{%s})'
'in order to add another one ...', order['id'])
if self.exchange.cancel_order(order['id'], trade.pair):
try:
self.exchange.cancel_order(order['id'], trade.pair)
except InvalidOrderException:
logger.exception(f"Could not cancel stoploss order {order['id']} "
f"for pair {trade.pair}")
try:
# creating the new one
stoploss_order_id = self.exchange.stoploss_limit(
pair=trade.pair, amount=trade.amount,
stop_price=trade.stop_loss, rate=trade.stop_loss * 0.99
)['id']
trade.stoploss_order_id = str(stoploss_order_id)
except DependencyException:
logger.exception(f"Could create trailing stoploss order "
f"for pair {trade.pair}.")
def check_sell(self, trade: Trade, sell_rate: float, buy: bool, sell: bool) -> bool:
if self.edge:
@ -828,7 +851,10 @@ class FreqtradeBot(object):
# First cancelling stoploss on exchange ...
if self.strategy.order_types.get('stoploss_on_exchange') and trade.stoploss_order_id:
self.exchange.cancel_order(trade.stoploss_order_id, trade.pair)
try:
self.exchange.cancel_order(trade.stoploss_order_id, trade.pair)
except InvalidOrderException:
logger.exception(f"Could not cancel stoploss order {trade.stoploss_order_id}")
# Execute sell and update trade record
order_id = self.exchange.sell(pair=str(trade.pair),
@ -860,6 +886,7 @@ class FreqtradeBot(object):
'pair': trade.pair,
'gain': gain,
'limit': trade.close_rate_requested,
'order_type': self.strategy.order_types['sell'],
'amount': trade.amount,
'open_rate': trade.open_rate,
'current_rate': current_rate,

View File

@ -3,10 +3,16 @@
Main Freqtrade bot script.
Read the documentation to know what cli arguments you need.
"""
import logging
import sys
# check min. python version
if sys.version_info < (3, 6):
sys.exit("Freqtrade requires Python version >= 3.6")
# flake8: noqa E402
import logging
from argparse import Namespace
from typing import List
from typing import Any, List
from freqtrade import OperationalException
from freqtrade.arguments import Arguments
@ -17,37 +23,43 @@ from freqtrade.worker import Worker
logger = logging.getLogger('freqtrade')
def main(sysargv: List[str]) -> None:
def main(sysargv: List[str] = None) -> None:
"""
This function will initiate the bot and start the trading loop.
:return: None
"""
arguments = Arguments(
sysargv,
'Free, open source crypto trading bot'
)
args: Namespace = arguments.get_parsed_arg()
# A subcommand has been issued.
# Means if Backtesting or Hyperopt have been called we exit the bot
if hasattr(args, 'func'):
args.func(args)
return
return_code: Any = 1
worker = None
return_code = 1
try:
# Load and run worker
worker = Worker(args)
worker.run()
set_loggers()
arguments = Arguments(
sysargv,
'Free, open source crypto trading bot'
)
args: Namespace = arguments.get_parsed_arg()
# A subcommand has been issued.
# Means if Backtesting or Hyperopt have been called we exit the bot
if hasattr(args, 'func'):
args.func(args)
# TODO: fetch return_code as returned by the command function here
return_code = 0
else:
# Load and run worker
worker = Worker(args)
worker.run()
except SystemExit as e:
return_code = e
except KeyboardInterrupt:
logger.info('SIGINT received, aborting ...')
return_code = 0
except OperationalException as e:
logger.error(str(e))
return_code = 2
except BaseException:
except Exception:
logger.exception('Fatal exception!')
finally:
if worker:
@ -56,5 +68,4 @@ def main(sysargv: List[str]) -> None:
if __name__ == '__main__':
set_loggers()
main(sys.argv[1:])
main()

View File

@ -1,18 +1,17 @@
"""
Various tool function for Freqtrade and scripts
"""
import gzip
import logging
import re
from datetime import datetime
from typing import Dict
from ccxt import Exchange
import numpy as np
from pandas import DataFrame
import rapidjson
logger = logging.getLogger(__name__)
@ -118,6 +117,8 @@ def format_ms_time(date: int) -> str:
def deep_merge_dicts(source, destination):
"""
Values from Source override destination, destination is returned (and modified!!)
Sample:
>>> a = { 'first' : { 'rows' : { 'pass' : 'dog', 'number' : '1' } } }
>>> b = { 'first' : { 'rows' : { 'fail' : 'cat', 'number' : '5' } } }
>>> merge(b, a) == { 'first' : { 'rows' : { 'pass' : 'dog', 'fail' : 'cat', 'number' : '5' } } }
@ -132,26 +133,3 @@ def deep_merge_dicts(source, destination):
destination[key] = value
return destination
def timeframe_to_seconds(ticker_interval: str) -> int:
"""
Translates the timeframe interval value written in the human readable
form ('1m', '5m', '1h', '1d', '1w', etc.) to the number
of seconds for one timeframe interval.
"""
return Exchange.parse_timeframe(ticker_interval)
def timeframe_to_minutes(ticker_interval: str) -> int:
"""
Same as above, but returns minutes.
"""
return Exchange.parse_timeframe(ticker_interval) // 60
def timeframe_to_msecs(ticker_interval: str) -> int:
"""
Same as above, but returns milliseconds.
"""
return Exchange.parse_timeframe(ticker_interval) * 1000

View File

@ -1,49 +1,111 @@
# pragma pylint: disable=missing-docstring
import logging
from datetime import datetime
from typing import Dict, Tuple
import operator
from argparse import Namespace
from typing import Any, Dict
import arrow
from pandas import DataFrame
from filelock import FileLock, Timeout
from freqtrade import DependencyException, constants
from freqtrade.state import RunMode
from freqtrade.utils import setup_utils_configuration
from freqtrade.optimize.default_hyperopt import DefaultHyperOpts # noqa: F401
logger = logging.getLogger(__name__)
def get_timeframe(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]:
def setup_configuration(args: Namespace, method: RunMode) -> Dict[str, Any]:
"""
Get the maximum timeframe for the given backtest data
:param data: dictionary with preprocessed backtesting data
:return: tuple containing min_date, max_date
Prepare the configuration for the Hyperopt module
:param args: Cli args from Arguments()
:return: Configuration
"""
timeframe = [
(arrow.get(frame['date'].min()), arrow.get(frame['date'].max()))
for frame in data.values()
]
return min(timeframe, key=operator.itemgetter(0))[0], \
max(timeframe, key=operator.itemgetter(1))[1]
config = setup_utils_configuration(args, method)
if method == RunMode.BACKTEST:
if config['stake_amount'] == constants.UNLIMITED_STAKE_AMOUNT:
raise DependencyException('stake amount could not be "%s" for backtesting' %
constants.UNLIMITED_STAKE_AMOUNT)
if method == RunMode.HYPEROPT:
# Special cases for Hyperopt
if config.get('strategy') and config.get('strategy') != 'DefaultStrategy':
logger.error("Please don't use --strategy for hyperopt.")
logger.error(
"Read the documentation at "
"https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md "
"to understand how to configure hyperopt.")
raise DependencyException("--strategy configured but not supported for hyperopt")
return config
def validate_backtest_data(data: Dict[str, DataFrame], min_date: datetime,
max_date: datetime, ticker_interval_mins: int) -> bool:
def start_backtesting(args: Namespace) -> None:
"""
Validates preprocessed backtesting data for missing values and shows warnings about it that.
Start Backtesting script
:param args: Cli args from Arguments()
:return: None
"""
# Import here to avoid loading backtesting module when it's not used
from freqtrade.optimize.backtesting import Backtesting
:param data: dictionary with preprocessed backtesting data
:param min_date: start-date of the data
:param max_date: end-date of the data
:param ticker_interval_mins: ticker interval in minutes
# Initialize configuration
config = setup_configuration(args, RunMode.BACKTEST)
logger.info('Starting freqtrade in Backtesting mode')
# Initialize backtesting object
backtesting = Backtesting(config)
backtesting.start()
def start_hyperopt(args: Namespace) -> None:
"""
# total difference in minutes / interval-minutes
expected_frames = int((max_date - min_date).total_seconds() // 60 // ticker_interval_mins)
found_missing = False
for pair, df in data.items():
dflen = len(df)
if dflen < expected_frames:
found_missing = True
logger.warning("%s has missing frames: expected %s, got %s, that's %s missing values",
pair, expected_frames, dflen, expected_frames - dflen)
return found_missing
Start hyperopt script
:param args: Cli args from Arguments()
:return: None
"""
# Import here to avoid loading hyperopt module when it's not used
from freqtrade.optimize.hyperopt import Hyperopt, HYPEROPT_LOCKFILE
# Initialize configuration
config = setup_configuration(args, RunMode.HYPEROPT)
logger.info('Starting freqtrade in Hyperopt mode')
lock = FileLock(HYPEROPT_LOCKFILE)
try:
with lock.acquire(timeout=1):
# Remove noisy log messages
logging.getLogger('hyperopt.tpe').setLevel(logging.WARNING)
logging.getLogger('filelock').setLevel(logging.WARNING)
# Initialize backtesting object
hyperopt = Hyperopt(config)
hyperopt.start()
except Timeout:
logger.info("Another running instance of freqtrade Hyperopt detected.")
logger.info("Simultaneous execution of multiple Hyperopt commands is not supported. "
"Hyperopt module is resource hungry. Please run your Hyperopts sequentially "
"or on separate machines.")
logger.info("Quitting now.")
# TODO: return False here in order to help freqtrade to exit
# with non-zero exit code...
# Same in Edge and Backtesting start() functions.
def start_edge(args: Namespace) -> None:
"""
Start Edge script
:param args: Cli args from Arguments()
:return: None
"""
from freqtrade.optimize.edge_cli import EdgeCli
# Initialize configuration
config = setup_configuration(args, RunMode.EDGE)
logger.info('Starting freqtrade in Edge mode')
# Initialize Edge object
edge_cli = EdgeCli(config)
edge_cli.start()

View File

@ -4,7 +4,6 @@
This module contains the backtesting logic
"""
import logging
from argparse import Namespace
from copy import deepcopy
from datetime import datetime, timedelta
from pathlib import Path
@ -13,17 +12,15 @@ from typing import Any, Dict, List, NamedTuple, Optional
from pandas import DataFrame
from tabulate import tabulate
from freqtrade import optimize
from freqtrade import DependencyException, constants
from freqtrade.arguments import Arguments
from freqtrade.configuration import Configuration
from freqtrade.data import history
from freqtrade.data.dataprovider import DataProvider
from freqtrade.misc import file_dump_json, timeframe_to_minutes
from freqtrade.exchange import timeframe_to_minutes
from freqtrade.misc import file_dump_json
from freqtrade.persistence import Trade
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
from freqtrade.state import RunMode
from freqtrade.strategy.interface import SellType, IStrategy
from freqtrade.strategy.interface import IStrategy, SellType
logger = logging.getLogger(__name__)
@ -66,8 +63,7 @@ class Backtesting(object):
self.config['dry_run'] = True
self.strategylist: List[IStrategy] = []
exchange_name = self.config.get('exchange', {}).get('name', 'bittrex').title()
self.exchange = ExchangeResolver(exchange_name, self.config).exchange
self.exchange = ExchangeResolver(self.config['exchange']['name'], self.config).exchange
self.fee = self.exchange.get_fee()
if self.config.get('runmode') != RunMode.HYPEROPT:
@ -75,18 +71,16 @@ class Backtesting(object):
IStrategy.dp = self.dataprovider
if self.config.get('strategy_list', None):
# Force one interval
self.ticker_interval = str(self.config.get('ticker_interval'))
self.ticker_interval_mins = timeframe_to_minutes(self.ticker_interval)
for strat in list(self.config['strategy_list']):
stratconf = deepcopy(self.config)
stratconf['strategy'] = strat
self.strategylist.append(StrategyResolver(stratconf).strategy)
else:
# only one strategy
# No strategy list specified, only one strategy
self.strategylist.append(StrategyResolver(self.config).strategy)
# Load one strategy
# Load one (first) strategy
self._set_strategy(self.strategylist[0])
def _set_strategy(self, strategy):
@ -97,7 +91,6 @@ class Backtesting(object):
self.ticker_interval = self.config.get('ticker_interval')
self.ticker_interval_mins = timeframe_to_minutes(self.ticker_interval)
self.tickerdata_to_dataframe = strategy.tickerdata_to_dataframe
self.advise_buy = strategy.advise_buy
self.advise_sell = strategy.advise_sell
# Set stoploss_on_exchange to false for backtesting,
@ -238,10 +231,9 @@ class Backtesting(object):
def _get_sell_trade_entry(
self, pair: str, buy_row: DataFrame,
partial_ticker: List, trade_count_lock: Dict, args: Dict) -> Optional[BacktestResult]:
partial_ticker: List, trade_count_lock: Dict,
stake_amount: float, max_open_trades: int) -> Optional[BacktestResult]:
stake_amount = args['stake_amount']
max_open_trades = args.get('max_open_trades', 0)
trade = Trade(
open_rate=buy_row.open,
open_date=buy_row.date,
@ -257,8 +249,7 @@ class Backtesting(object):
# Increase trade_count_lock for every iteration
trade_count_lock[sell_row.date] = trade_count_lock.get(sell_row.date, 0) + 1
buy_signal = sell_row.buy
sell = self.strategy.should_sell(trade, sell_row.open, sell_row.date, buy_signal,
sell = self.strategy.should_sell(trade, sell_row.open, sell_row.date, sell_row.buy,
sell_row.sell, low=sell_row.low, high=sell_row.high)
if sell.sell_flag:
@ -331,6 +322,7 @@ class Backtesting(object):
:return: DataFrame
"""
processed = args['processed']
stake_amount = args['stake_amount']
max_open_trades = args.get('max_open_trades', 0)
position_stacking = args.get('position_stacking', False)
start_date = args['start_date']
@ -357,7 +349,7 @@ class Backtesting(object):
row = ticker[pair][indexes[pair]]
except IndexError:
# missing Data for one pair at the end.
# Warnings for this are shown by `validate_backtest_data`
# Warnings for this are shown during data loading
continue
# Waits until the time-counter reaches the start of the data for this pair.
@ -381,7 +373,8 @@ class Backtesting(object):
trade_count_lock[row.date] = trade_count_lock.get(row.date, 0) + 1
trade_entry = self._get_sell_trade_entry(pair, row, ticker[pair][indexes[pair]:],
trade_count_lock, args)
trade_count_lock, stake_amount,
max_open_trades)
if trade_entry:
lock_pair_until[pair] = trade_entry.close_time
@ -404,24 +397,17 @@ class Backtesting(object):
logger.info('Using stake_currency: %s ...', self.config['stake_currency'])
logger.info('Using stake_amount: %s ...', self.config['stake_amount'])
if self.config.get('live'):
logger.info('Downloading data for all pairs in whitelist ...')
self.exchange.refresh_latest_ohlcv([(pair, self.ticker_interval) for pair in pairs])
data = {key[0]: value for key, value in self.exchange._klines.items()}
else:
logger.info('Using local backtesting data (using whitelist in given config) ...')
timerange = Arguments.parse_timerange(None if self.config.get(
'timerange') is None else str(self.config.get('timerange')))
data = history.load_data(
datadir=Path(self.config['datadir']) if self.config.get('datadir') else None,
pairs=pairs,
ticker_interval=self.ticker_interval,
refresh_pairs=self.config.get('refresh_pairs', False),
exchange=self.exchange,
timerange=timerange
)
timerange = Arguments.parse_timerange(None if self.config.get(
'timerange') is None else str(self.config.get('timerange')))
data = history.load_data(
datadir=Path(self.config['datadir']) if self.config.get('datadir') else None,
pairs=pairs,
ticker_interval=self.ticker_interval,
refresh_pairs=self.config.get('refresh_pairs', False),
exchange=self.exchange,
timerange=timerange,
live=self.config.get('live', False)
)
if not data:
logger.critical("No data found. Terminating.")
@ -434,20 +420,19 @@ class Backtesting(object):
max_open_trades = 0
all_results = {}
min_date, max_date = history.get_timeframe(data)
logger.info(
'Backtesting with data from %s up to %s (%s days)..',
min_date.isoformat(),
max_date.isoformat(),
(max_date - min_date).days
)
for strat in self.strategylist:
logger.info("Running backtesting for Strategy %s", strat.get_strategy_name())
self._set_strategy(strat)
min_date, max_date = optimize.get_timeframe(data)
# Validate dataframe for missing values (mainly at start and end, as fillup is called)
optimize.validate_backtest_data(data, min_date, max_date,
timeframe_to_minutes(self.ticker_interval))
logger.info(
'Measuring data from %s up to %s (%s days)..',
min_date.isoformat(),
max_date.isoformat(),
(max_date - min_date).days
)
# need to reprocess data every time to populate signals
preprocessed = self.strategy.tickerdata_to_dataframe(data)
@ -484,38 +469,3 @@ class Backtesting(object):
print(' Strategy Summary '.center(133, '='))
print(self._generate_text_table_strategy(all_results))
print('\nFor more details, please look at the detail tables above')
def setup_configuration(args: Namespace) -> Dict[str, Any]:
"""
Prepare the configuration for the backtesting
:param args: Cli args from Arguments()
:return: Configuration
"""
configuration = Configuration(args, RunMode.BACKTEST)
config = configuration.get_config()
# Ensure we do not use Exchange credentials
config['exchange']['key'] = ''
config['exchange']['secret'] = ''
if config['stake_amount'] == constants.UNLIMITED_STAKE_AMOUNT:
raise DependencyException('stake amount could not be "%s" for backtesting' %
constants.UNLIMITED_STAKE_AMOUNT)
return config
def start(args: Namespace) -> None:
"""
Start Backtesting script
:param args: Cli args from Arguments()
:return: None
"""
# Initialize configuration
config = setup_configuration(args)
logger.info('Starting freqtrade in Backtesting mode')
# Initialize backtesting object
backtesting = Backtesting(config)
backtesting.start()

View File

@ -70,9 +70,10 @@ class DefaultHyperOpts(IHyperOpt):
dataframe['close'], dataframe['sar']
))
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'buy'] = 1
if conditions:
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'buy'] = 1
return dataframe
@ -129,9 +130,10 @@ class DefaultHyperOpts(IHyperOpt):
dataframe['sar'], dataframe['close']
))
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'sell'] = 1
if conditions:
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'sell'] = 1
return dataframe

View File

@ -4,16 +4,14 @@
This module contains the edge backtesting interface
"""
import logging
from argparse import Namespace
from typing import Dict, Any
from tabulate import tabulate
from freqtrade import constants
from freqtrade.edge import Edge
from freqtrade.arguments import Arguments
from freqtrade.configuration import Configuration
from freqtrade.exchange import Exchange
from freqtrade.resolvers import StrategyResolver
from freqtrade.state import RunMode
logger = logging.getLogger(__name__)
@ -35,6 +33,7 @@ class EdgeCli(object):
self.config['exchange']['secret'] = ''
self.config['exchange']['password'] = ''
self.config['exchange']['uid'] = ''
self.config['stake_amount'] = constants.UNLIMITED_STAKE_AMOUNT
self.config['dry_run'] = True
self.exchange = Exchange(self.config)
self.strategy = StrategyResolver(self.config).strategy
@ -73,37 +72,7 @@ class EdgeCli(object):
floatfmt=floatfmt, tablefmt="pipe")
def start(self) -> None:
self.edge.calculate()
print('') # blank like for readability
print(self._generate_edge_table(self.edge._cached_pairs))
def setup_configuration(args: Namespace) -> Dict[str, Any]:
"""
Prepare the configuration for edge backtesting
:param args: Cli args from Arguments()
:return: Configuration
"""
configuration = Configuration(args, RunMode.EDGECLI)
config = configuration.get_config()
# Ensure we do not use Exchange credentials
config['exchange']['key'] = ''
config['exchange']['secret'] = ''
return config
def start(args: Namespace) -> None:
"""
Start Edge script
:param args: Cli args from Arguments()
:return: None
"""
# Initialize configuration
config = setup_configuration(args)
logger.info('Starting freqtrade in Edge mode')
# Initialize Edge object
edge_cli = EdgeCli(config)
edge_cli.start()
result = self.edge.calculate()
if result:
print('') # blank line for readability
print(self._generate_edge_table(self.edge._cached_pairs))

View File

@ -5,33 +5,33 @@ This module contains the hyperopt logic
"""
import logging
import multiprocessing
import os
import sys
from argparse import Namespace
from math import exp
from operator import itemgetter
from pathlib import Path
from pprint import pprint
from typing import Any, Dict, List
from joblib import Parallel, delayed, dump, load, wrap_non_picklable_objects
from joblib import Parallel, delayed, dump, load, wrap_non_picklable_objects, cpu_count
from pandas import DataFrame
from skopt import Optimizer
from skopt.space import Dimension
from freqtrade.arguments import Arguments
from freqtrade.configuration import Configuration
from freqtrade.data.history import load_data
from freqtrade.optimize import get_timeframe
from freqtrade.data.history import load_data, get_timeframe
from freqtrade.optimize.backtesting import Backtesting
from freqtrade.state import RunMode
from freqtrade.resolvers import HyperOptResolver
from freqtrade.resolvers.hyperopt_resolver import HyperOptResolver
logger = logging.getLogger(__name__)
INITIAL_POINTS = 30
MAX_LOSS = 100000 # just a big enough number to be bad result in loss optimization
TICKERDATA_PICKLE = os.path.join('user_data', 'hyperopt_tickerdata.pkl')
TRIALSDATA_PICKLE = os.path.join('user_data', 'hyperopt_results.pickle')
HYPEROPT_LOCKFILE = os.path.join('user_data', 'hyperopt.lock')
class Hyperopt(Backtesting):
@ -44,7 +44,6 @@ class Hyperopt(Backtesting):
"""
def __init__(self, config: Dict[str, Any]) -> None:
super().__init__(config)
self.config = config
self.custom_hyperopt = HyperOptResolver(self.config).hyperopt
# set TARGET_TRADES to suit your number concurrent trades so its realistic
@ -57,13 +56,15 @@ class Hyperopt(Backtesting):
# if eval ends with higher value, we consider it a failed eval
self.max_accepted_trade_duration = 300
# this is expexted avg profit * expected trade count
# for example 3.5%, 1100 trades, self.expected_max_profit = 3.85
# check that the reported Σ% values do not exceed this!
# This is assumed to be expected avg profit * expected trade count.
# For example, for 0.35% avg per trade (or 0.0035 as ratio) and 1100 trades,
# self.expected_max_profit = 3.85
# Check that the reported Σ% values do not exceed this!
# Note, this is ratio. 3.85 stated above means 385Σ%.
self.expected_max_profit = 3.0
# Previous evaluations
self.trials_file = os.path.join('user_data', 'hyperopt_results.pickle')
self.trials_file = TRIALSDATA_PICKLE
self.trials: List = []
def get_args(self, params):
@ -115,14 +116,20 @@ class Hyperopt(Backtesting):
"""
Log results if it is better than any previous evaluation
"""
if results['loss'] < self.current_best_loss:
current = results['current_tries']
print_all = self.config.get('print_all', False)
if print_all or results['loss'] < self.current_best_loss:
# Output human-friendly index here (starting from 1)
current = results['current_tries'] + 1
total = results['total_tries']
res = results['result']
loss = results['loss']
self.current_best_loss = results['loss']
log_msg = f'\n{current:5d}/{total}: {res}. Loss {loss:.5f}'
print(log_msg)
log_msg = f'{current:5d}/{total}: {res} Objective: {loss:.5f}'
log_msg = f'*{log_msg}' if results['initial_point'] else f' {log_msg}'
if print_all:
print(log_msg)
else:
print('\n' + log_msg)
else:
print('.', end='')
sys.stdout.flush()
@ -199,7 +206,11 @@ class Hyperopt(Backtesting):
trade_count = len(results.index)
trade_duration = results.trade_duration.mean()
if trade_count == 0:
# If this evaluation contains too short amount of trades to be
# interesting -- consider it as 'bad' (assigned max. loss value)
# in order to cast this hyperspace point away from optimization
# path. We do not want to optimize 'hodl' strategies.
if trade_count < self.config['hyperopt_min_trades']:
return {
'loss': MAX_LOSS,
'params': params,
@ -222,20 +233,21 @@ class Hyperopt(Backtesting):
avg_profit = results.profit_percent.mean() * 100.0
total_profit = results.profit_abs.sum()
stake_cur = self.config['stake_currency']
profit = results.profit_percent.sum()
profit = results.profit_percent.sum() * 100.0
duration = results.trade_duration.mean()
return (f'{trades:6d} trades. Avg profit {avg_profit: 5.2f}%. '
f'Total profit {total_profit: 11.8f} {stake_cur} '
f'({profit:.4f}Σ%). Avg duration {duration:5.1f} mins.')
f'({profit: 7.2f}Σ%). Avg duration {duration:5.1f} mins.')
def get_optimizer(self, cpu_count) -> Optimizer:
return Optimizer(
self.hyperopt_space(),
base_estimator="ET",
acq_optimizer="auto",
n_initial_points=30,
acq_optimizer_kwargs={'n_jobs': cpu_count}
n_initial_points=INITIAL_POINTS,
acq_optimizer_kwargs={'n_jobs': cpu_count},
random_state=self.config.get('hyperopt_random_state', None)
)
def run_optimizer_parallel(self, parallel, asked) -> List:
@ -258,69 +270,68 @@ class Hyperopt(Backtesting):
datadir=Path(self.config['datadir']) if self.config.get('datadir') else None,
pairs=self.config['exchange']['pair_whitelist'],
ticker_interval=self.ticker_interval,
refresh_pairs=self.config.get('refresh_pairs', False),
exchange=self.exchange,
timerange=timerange
)
if not data:
logger.critical("No data found. Terminating.")
return
min_date, max_date = get_timeframe(data)
logger.info(
'Hyperopting with data from %s up to %s (%s days)..',
min_date.isoformat(),
max_date.isoformat(),
(max_date - min_date).days
)
if self.has_space('buy') or self.has_space('sell'):
self.strategy.advise_indicators = \
self.custom_hyperopt.populate_indicators # type: ignore
dump(self.strategy.tickerdata_to_dataframe(data), TICKERDATA_PICKLE)
preprocessed = self.strategy.tickerdata_to_dataframe(data)
dump(preprocessed, TICKERDATA_PICKLE)
# We don't need exchange instance anymore while running hyperopt
self.exchange = None # type: ignore
self.load_previous_results()
cpus = multiprocessing.cpu_count()
cpus = cpu_count()
logger.info(f'Found {cpus} CPU cores. Let\'s make them scream!')
config_jobs = self.config.get('hyperopt_jobs', -1)
logger.info(f'Number of parallel jobs set as: {config_jobs}')
opt = self.get_optimizer(cpus)
EVALS = max(self.total_tries // cpus, 1)
opt = self.get_optimizer(config_jobs)
try:
with Parallel(n_jobs=cpus) as parallel:
with Parallel(n_jobs=config_jobs) as parallel:
jobs = parallel._effective_n_jobs()
logger.info(f'Effective number of parallel workers used: {jobs}')
EVALS = max(self.total_tries // jobs, 1)
for i in range(EVALS):
asked = opt.ask(n_points=cpus)
asked = opt.ask(n_points=jobs)
f_val = self.run_optimizer_parallel(parallel, asked)
opt.tell(asked, [i['loss'] for i in f_val])
self.trials += f_val
for j in range(cpus):
for j in range(jobs):
current = i * jobs + j
self.log_results({
'loss': f_val[j]['loss'],
'current_tries': i * cpus + j,
'current_tries': current,
'initial_point': current < INITIAL_POINTS,
'total_tries': self.total_tries,
'result': f_val[j]['result'],
})
logger.debug(f"Optimizer params: {f_val[j]['params']}")
for j in range(jobs):
logger.debug(f"Optimizer state: Xi: {opt.Xi[-j-1]}, yi: {opt.yi[-j-1]}")
except KeyboardInterrupt:
print('User interrupted..')
self.save_trials()
self.log_trials_result()
def start(args: Namespace) -> None:
"""
Start Backtesting script
:param args: Cli args from Arguments()
:return: None
"""
# Remove noisy log messages
logging.getLogger('hyperopt.tpe').setLevel(logging.WARNING)
# Initialize configuration
# Monkey patch the configuration with hyperopt_conf.py
configuration = Configuration(args, RunMode.HYPEROPT)
logger.info('Starting freqtrade in Hyperopt mode')
config = configuration.load_config()
config['exchange']['key'] = ''
config['exchange']['secret'] = ''
if config.get('strategy') and config.get('strategy') != 'DefaultStrategy':
logger.error("Please don't use --strategy for hyperopt.")
logger.error(
"Read the documentation at "
"https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md "
"to understand how to configure hyperopt.")
raise ValueError("--strategy configured but not supported for hyperopt")
# Initialize backtesting object
hyperopt = Hyperopt(config)
hyperopt.start()

View File

@ -20,6 +20,7 @@ class IHyperOpt(ABC):
stoploss -> float: optimal stoploss designed for the strategy
ticker_interval -> int: value of the ticker interval to use for the strategy
"""
ticker_interval: str
@staticmethod
@abstractmethod

View File

@ -25,15 +25,16 @@ _DECL_BASE: Any = declarative_base()
_SQL_DOCS_URL = 'http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls'
def init(config: Dict) -> None:
def init(db_url: str, clean_open_orders: bool = False) -> None:
"""
Initializes this module with the given config,
registers all known command handlers
and starts polling for message updates
:param config: config to use
:param db_url: Database to use
:param clean_open_orders: Remove open orders from the database.
Useful for dry-run or if all orders have been reset on the exchange.
:return: None
"""
db_url = config.get('db_url', None)
kwargs = {}
# Take care of thread ownership if in-memory db
@ -57,7 +58,7 @@ def init(config: Dict) -> None:
check_migrate(engine)
# Clean dry_run DB if the db is not in-memory
if config.get('dry_run', False) and db_url != 'sqlite://':
if clean_open_orders and db_url != 'sqlite://':
clean_dry_run_db()
@ -213,11 +214,31 @@ class Trade(_DECL_BASE):
return (f'Trade(id={self.id}, pair={self.pair}, amount={self.amount:.8f}, '
f'open_rate={self.open_rate:.8f}, open_since={open_since})')
def to_json(self) -> Dict[str, Any]:
return {
'trade_id': self.id,
'pair': self.pair,
'open_date_hum': arrow.get(self.open_date).humanize(),
'open_date': self.open_date.strftime("%Y-%m-%d %H:%M:%S"),
'close_date_hum': (arrow.get(self.close_date).humanize()
if self.close_date else None),
'close_date': (self.close_date.strftime("%Y-%m-%d %H:%M:%S")
if self.close_date else None),
'open_rate': self.open_rate,
'close_rate': self.close_rate,
'amount': round(self.amount, 8),
'stake_amount': round(self.stake_amount, 8),
'stop_loss': self.stop_loss,
'stop_loss_pct': (self.stop_loss_pct * 100) if self.stop_loss_pct else None,
'initial_stop_loss': self.initial_stop_loss,
'initial_stop_loss_pct': (self.initial_stop_loss_pct * 100
if self.initial_stop_loss_pct else None),
}
def adjust_min_max_rates(self, current_price: float):
"""
Adjust the max_rate and min_rate.
"""
logger.debug("Adjusting min/max rates")
self.max_rate = max(current_price, self.max_rate or self.open_rate)
self.min_rate = min(current_price, self.min_rate or self.open_rate)
@ -401,3 +422,22 @@ class Trade(_DECL_BASE):
Query trades from persistence layer
"""
return Trade.query.filter(Trade.is_open.is_(True)).all()
@staticmethod
def stoploss_reinitialization(desired_stoploss):
"""
Adjust initial Stoploss to desired stoploss for all open trades.
"""
for trade in Trade.get_open_trades():
logger.info("Found open trade: %s", trade)
# skip case if trailing-stop changed the stoploss already.
if (trade.stop_loss == trade.initial_stop_loss
and trade.initial_stop_loss_pct != desired_stoploss):
# Stoploss value got changed
logger.info(f"Stoploss for {trade} needs adjustment.")
# Force reset of stoploss
trade.stop_loss = None
trade.adjust_stop_loss(trade.open_rate, desired_stoploss)
logger.info(f"new stoploss: {trade.stop_loss}, ")

View File

223
freqtrade/plot/plotting.py Normal file
View File

@ -0,0 +1,223 @@
import logging
from typing import List
import pandas as pd
from pathlib import Path
logger = logging.getLogger(__name__)
try:
from plotly import tools
from plotly.offline import plot
import plotly.graph_objs as go
except ImportError:
logger.exception("Module plotly not found \n Please install using `pip install plotly`")
exit(1)
def generate_row(fig, row, indicators: List[str], data: pd.DataFrame) -> tools.make_subplots:
"""
Generator all the indicator selected by the user for a specific row
:param fig: Plot figure to append to
:param row: row number for this plot
:param indicators: List of indicators present in the dataframe
:param data: candlestick DataFrame
"""
for indicator in indicators:
if indicator in data:
# TODO: Figure out why scattergl causes problems
scattergl = go.Scatter(
x=data['date'],
y=data[indicator].values,
mode='lines',
name=indicator
)
fig.append_trace(scattergl, row, 1)
else:
logger.info(
'Indicator "%s" ignored. Reason: This indicator is not found '
'in your strategy.',
indicator
)
return fig
def plot_trades(fig, trades: pd.DataFrame):
"""
Plot trades to "fig"
"""
# Trades can be empty
if trades is not None and len(trades) > 0:
trade_buys = go.Scatter(
x=trades["open_time"],
y=trades["open_rate"],
mode='markers',
name='trade_buy',
marker=dict(
symbol='square-open',
size=11,
line=dict(width=2),
color='green'
)
)
# Create description for sell summarizing the trade
desc = trades.apply(lambda row: f"{round(row['profitperc'], 3)}%, {row['sell_reason']}, "
f"{row['duration']}min",
axis=1)
trade_sells = go.Scatter(
x=trades["close_time"],
y=trades["close_rate"],
text=desc,
mode='markers',
name='trade_sell',
marker=dict(
symbol='square-open',
size=11,
line=dict(width=2),
color='red'
)
)
fig.append_trace(trade_buys, 1, 1)
fig.append_trace(trade_sells, 1, 1)
else:
logger.warning("No trades found.")
return fig
def generate_graph(
pair: str,
data: pd.DataFrame,
trades: pd.DataFrame = None,
indicators1: List[str] = [],
indicators2: List[str] = [],
) -> go.Figure:
"""
Generate the graph from the data generated by Backtesting or from DB
Volume will always be ploted in row2, so Row 1 and 3 are to our disposal for custom indicators
:param pair: Pair to Display on the graph
:param data: OHLCV DataFrame containing indicators and buy/sell signals
:param trades: All trades created
:param indicators1: List containing Main plot indicators
:param indicators2: List containing Sub plot indicators
:return: None
"""
# Define the graph
fig = tools.make_subplots(
rows=3,
cols=1,
shared_xaxes=True,
row_width=[1, 1, 4],
vertical_spacing=0.0001,
)
fig['layout'].update(title=pair)
fig['layout']['yaxis1'].update(title='Price')
fig['layout']['yaxis2'].update(title='Volume')
fig['layout']['yaxis3'].update(title='Other')
fig['layout']['xaxis']['rangeslider'].update(visible=False)
# Common information
candles = go.Candlestick(
x=data.date,
open=data.open,
high=data.high,
low=data.low,
close=data.close,
name='Price'
)
fig.append_trace(candles, 1, 1)
if 'buy' in data.columns:
df_buy = data[data['buy'] == 1]
if len(df_buy) > 0:
buys = go.Scatter(
x=df_buy.date,
y=df_buy.close,
mode='markers',
name='buy',
marker=dict(
symbol='triangle-up-dot',
size=9,
line=dict(width=1),
color='green',
)
)
fig.append_trace(buys, 1, 1)
else:
logger.warning("No buy-signals found.")
if 'sell' in data.columns:
df_sell = data[data['sell'] == 1]
if len(df_sell) > 0:
sells = go.Scatter(
x=df_sell.date,
y=df_sell.close,
mode='markers',
name='sell',
marker=dict(
symbol='triangle-down-dot',
size=9,
line=dict(width=1),
color='red',
)
)
fig.append_trace(sells, 1, 1)
else:
logger.warning("No sell-signals found.")
if 'bb_lowerband' in data and 'bb_upperband' in data:
bb_lower = go.Scattergl(
x=data.date,
y=data.bb_lowerband,
name='BB lower',
line={'color': 'rgba(255,255,255,0)'},
)
bb_upper = go.Scattergl(
x=data.date,
y=data.bb_upperband,
name='BB upper',
fill="tonexty",
fillcolor="rgba(0,176,246,0.2)",
line={'color': 'rgba(255,255,255,0)'},
)
fig.append_trace(bb_lower, 1, 1)
fig.append_trace(bb_upper, 1, 1)
# Add indicators to main plot
fig = generate_row(fig=fig, row=1, indicators=indicators1, data=data)
fig = plot_trades(fig, trades)
# Volume goes to row 2
volume = go.Bar(
x=data['date'],
y=data['volume'],
name='Volume'
)
fig.append_trace(volume, 2, 1)
# Add indicators to seperate row
fig = generate_row(fig=fig, row=3, indicators=indicators2, data=data)
return fig
def generate_plot_file(fig, pair, ticker_interval) -> None:
"""
Generate a plot html file from pre populated fig plotly object
:param fig: Plotly Figure to plot
:param pair: Pair to plot (used as filename and Plot title)
:param ticker_interval: Used as part of the filename
:return: None
"""
logger.info('Generate plot file for %s', pair)
pair_name = pair.replace("/", "_")
file_name = 'freqtrade-plot-' + pair_name + '-' + ticker_interval + '.html'
Path("user_data/plots").mkdir(parents=True, exist_ok=True)
plot(fig, filename=str(Path('user_data/plots').joinpath(file_name)),
auto_open=False)

View File

@ -1,5 +1,6 @@
from freqtrade.resolvers.iresolver import IResolver # noqa: F401
from freqtrade.resolvers.exchange_resolver import ExchangeResolver # noqa: F401
from freqtrade.resolvers.hyperopt_resolver import HyperOptResolver # noqa: F401
# Don't import HyperoptResolver to avoid loading the whole Optimize tree
# from freqtrade.resolvers.hyperopt_resolver import HyperOptResolver # noqa: F401
from freqtrade.resolvers.pairlist_resolver import PairListResolver # noqa: F401
from freqtrade.resolvers.strategy_resolver import StrategyResolver # noqa: F401

View File

@ -22,6 +22,7 @@ class ExchangeResolver(IResolver):
Load the custom class from config parameter
:param config: configuration dictionary
"""
exchange_name = exchange_name.title()
try:
self.exchange = self._load_exchange(exchange_name, kwargs={'config': config})
except ImportError:

View File

@ -32,6 +32,9 @@ class HyperOptResolver(IResolver):
hyperopt_name = config.get('hyperopt') or DEFAULT_HYPEROPT
self.hyperopt = self._load_hyperopt(hyperopt_name, extra_dir=config.get('hyperopt_path'))
# Assign ticker_interval to be used in hyperopt
self.hyperopt.__class__.ticker_interval = str(config['ticker_interval'])
if not hasattr(self.hyperopt, 'populate_buy_trend'):
logger.warning("Custom Hyperopt does not provide populate_buy_trend. "
"Using populate_buy_trend from DefaultStrategy.")

375
freqtrade/rpc/api_server.py Normal file
View File

@ -0,0 +1,375 @@
import logging
import threading
from datetime import date, datetime
from ipaddress import IPv4Address
from typing import Dict
from arrow import Arrow
from flask import Flask, jsonify, request
from flask.json import JSONEncoder
from werkzeug.serving import make_server
from freqtrade.__init__ import __version__
from freqtrade.rpc.rpc import RPC, RPCException
logger = logging.getLogger(__name__)
BASE_URI = "/api/v1"
class ArrowJSONEncoder(JSONEncoder):
def default(self, obj):
try:
if isinstance(obj, Arrow):
return obj.for_json()
elif isinstance(obj, date):
return obj.strftime("%Y-%m-%d")
elif isinstance(obj, datetime):
return obj.strftime("%Y-%m-%d %H:%M:%S")
iterable = iter(obj)
except TypeError:
pass
else:
return list(iterable)
return JSONEncoder.default(self, obj)
class ApiServer(RPC):
"""
This class runs api server and provides rpc.rpc functionality to it
This class starts a none blocking thread the api server runs within
"""
def rpc_catch_errors(func):
def func_wrapper(self, *args, **kwargs):
try:
return func(self, *args, **kwargs)
except RPCException as e:
logger.exception("API Error calling %s: %s", func.__name__, e)
return self.rest_error(f"Error querying {func.__name__}: {e}")
return func_wrapper
def check_auth(self, username, password):
return (username == self._config['api_server'].get('username') and
password == self._config['api_server'].get('password'))
def require_login(func):
def func_wrapper(self, *args, **kwargs):
auth = request.authorization
if auth and self.check_auth(auth.username, auth.password):
return func(self, *args, **kwargs)
else:
return jsonify({"error": "Unauthorized"}), 401
return func_wrapper
def __init__(self, freqtrade) -> None:
"""
Init the api server, and init the super class RPC
:param freqtrade: Instance of a freqtrade bot
:return: None
"""
super().__init__(freqtrade)
self._config = freqtrade.config
self.app = Flask(__name__)
self.app.json_encoder = ArrowJSONEncoder
# Register application handling
self.register_rest_rpc_urls()
thread = threading.Thread(target=self.run, daemon=True)
thread.start()
def cleanup(self) -> None:
logger.info("Stopping API Server")
self.srv.shutdown()
def run(self):
"""
Method that runs flask app in its own thread forever.
Section to handle configuration and running of the Rest server
also to check and warn if not bound to a loopback, warn on security risk.
"""
rest_ip = self._config['api_server']['listen_ip_address']
rest_port = self._config['api_server']['listen_port']
logger.info(f'Starting HTTP Server at {rest_ip}:{rest_port}')
if not IPv4Address(rest_ip).is_loopback:
logger.warning("SECURITY WARNING - Local Rest Server listening to external connections")
logger.warning("SECURITY WARNING - This is insecure please set to your loopback,"
"e.g 127.0.0.1 in config.json")
if not self._config['api_server'].get('password'):
logger.warning("SECURITY WARNING - No password for local REST Server defined. "
"Please make sure that this is intentional!")
# Run the Server
logger.info('Starting Local Rest Server.')
try:
self.srv = make_server(rest_ip, rest_port, self.app)
self.srv.serve_forever()
except Exception:
logger.exception("Api server failed to start.")
logger.info('Local Rest Server started.')
def send_msg(self, msg: Dict[str, str]) -> None:
"""
We don't push to endpoints at the moment.
Take a look at webhooks for that functionality.
"""
pass
def rest_dump(self, return_value):
""" Helper function to jsonify object for a webserver """
return jsonify(return_value)
def rest_error(self, error_msg):
return jsonify({"error": error_msg}), 502
def register_rest_rpc_urls(self):
"""
Registers flask app URLs that are calls to functonality in rpc.rpc.
First two arguments passed are /URL and 'Label'
Label can be used as a shortcut when refactoring
:return:
"""
self.app.register_error_handler(404, self.page_not_found)
# Actions to control the bot
self.app.add_url_rule(f'{BASE_URI}/start', 'start',
view_func=self._start, methods=['POST'])
self.app.add_url_rule(f'{BASE_URI}/stop', 'stop', view_func=self._stop, methods=['POST'])
self.app.add_url_rule(f'{BASE_URI}/stopbuy', 'stopbuy',
view_func=self._stopbuy, methods=['POST'])
self.app.add_url_rule(f'{BASE_URI}/reload_conf', 'reload_conf',
view_func=self._reload_conf, methods=['POST'])
# Info commands
self.app.add_url_rule(f'{BASE_URI}/balance', 'balance',
view_func=self._balance, methods=['GET'])
self.app.add_url_rule(f'{BASE_URI}/count', 'count', view_func=self._count, methods=['GET'])
self.app.add_url_rule(f'{BASE_URI}/daily', 'daily', view_func=self._daily, methods=['GET'])
self.app.add_url_rule(f'{BASE_URI}/edge', 'edge', view_func=self._edge, methods=['GET'])
self.app.add_url_rule(f'{BASE_URI}/profit', 'profit',
view_func=self._profit, methods=['GET'])
self.app.add_url_rule(f'{BASE_URI}/performance', 'performance',
view_func=self._performance, methods=['GET'])
self.app.add_url_rule(f'{BASE_URI}/status', 'status',
view_func=self._status, methods=['GET'])
self.app.add_url_rule(f'{BASE_URI}/version', 'version',
view_func=self._version, methods=['GET'])
# Combined actions and infos
self.app.add_url_rule(f'{BASE_URI}/blacklist', 'blacklist', view_func=self._blacklist,
methods=['GET', 'POST'])
self.app.add_url_rule(f'{BASE_URI}/whitelist', 'whitelist', view_func=self._whitelist,
methods=['GET'])
self.app.add_url_rule(f'{BASE_URI}/forcebuy', 'forcebuy',
view_func=self._forcebuy, methods=['POST'])
self.app.add_url_rule(f'{BASE_URI}/forcesell', 'forcesell', view_func=self._forcesell,
methods=['POST'])
# TODO: Implement the following
# help (?)
@require_login
def page_not_found(self, error):
"""
Return "404 not found", 404.
"""
return self.rest_dump({
'status': 'error',
'reason': f"There's no API call for {request.base_url}.",
'code': 404
}), 404
@require_login
@rpc_catch_errors
def _start(self):
"""
Handler for /start.
Starts TradeThread in bot if stopped.
"""
msg = self._rpc_start()
return self.rest_dump(msg)
@require_login
@rpc_catch_errors
def _stop(self):
"""
Handler for /stop.
Stops TradeThread in bot if running
"""
msg = self._rpc_stop()
return self.rest_dump(msg)
@require_login
@rpc_catch_errors
def _stopbuy(self):
"""
Handler for /stopbuy.
Sets max_open_trades to 0 and gracefully sells all open trades
"""
msg = self._rpc_stopbuy()
return self.rest_dump(msg)
@require_login
@rpc_catch_errors
def _version(self):
"""
Prints the bot's version
"""
return self.rest_dump({"version": __version__})
@require_login
@rpc_catch_errors
def _reload_conf(self):
"""
Handler for /reload_conf.
Triggers a config file reload
"""
msg = self._rpc_reload_conf()
return self.rest_dump(msg)
@require_login
@rpc_catch_errors
def _count(self):
"""
Handler for /count.
Returns the number of trades running
"""
msg = self._rpc_count()
return self.rest_dump(msg)
@require_login
@rpc_catch_errors
def _daily(self):
"""
Returns the last X days trading stats summary.
:return: stats
"""
timescale = request.args.get('timescale', 7)
timescale = int(timescale)
stats = self._rpc_daily_profit(timescale,
self._config['stake_currency'],
self._config['fiat_display_currency']
)
return self.rest_dump(stats)
@require_login
@rpc_catch_errors
def _edge(self):
"""
Returns information related to Edge.
:return: edge stats
"""
stats = self._rpc_edge()
return self.rest_dump(stats)
@require_login
@rpc_catch_errors
def _profit(self):
"""
Handler for /profit.
Returns a cumulative profit statistics
:return: stats
"""
logger.info("LocalRPC - Profit Command Called")
stats = self._rpc_trade_statistics(self._config['stake_currency'],
self._config['fiat_display_currency']
)
return self.rest_dump(stats)
@require_login
@rpc_catch_errors
def _performance(self):
"""
Handler for /performance.
Returns a cumulative performance statistics
:return: stats
"""
logger.info("LocalRPC - performance Command Called")
stats = self._rpc_performance()
return self.rest_dump(stats)
@require_login
@rpc_catch_errors
def _status(self):
"""
Handler for /status.
Returns the current status of the trades in json format
"""
results = self._rpc_trade_status()
return self.rest_dump(results)
@require_login
@rpc_catch_errors
def _balance(self):
"""
Handler for /balance.
Returns the current status of the trades in json format
"""
results = self._rpc_balance(self._config.get('fiat_display_currency', ''))
return self.rest_dump(results)
@require_login
@rpc_catch_errors
def _whitelist(self):
"""
Handler for /whitelist.
"""
results = self._rpc_whitelist()
return self.rest_dump(results)
@require_login
@rpc_catch_errors
def _blacklist(self):
"""
Handler for /blacklist.
"""
add = request.json.get("blacklist", None) if request.method == 'POST' else None
results = self._rpc_blacklist(add)
return self.rest_dump(results)
@require_login
@rpc_catch_errors
def _forcebuy(self):
"""
Handler for /forcebuy.
"""
asset = request.json.get("pair")
price = request.json.get("price", None)
trade = self._rpc_forcebuy(asset, price)
if trade:
return self.rest_dump(trade.to_json())
else:
return self.rest_dump({"status": f"Error buying pair {asset}."})
@require_login
@rpc_catch_errors
def _forcesell(self):
"""
Handler for /forcesell.
"""
tradeid = request.json.get("tradeid")
results = self._rpc_forcesell(tradeid)
return self.rest_dump(results)

View File

@ -48,6 +48,11 @@ class RPCException(Exception):
def __str__(self):
return self.message
def __json__(self):
return {
'msg': self.message
}
class RPC(object):
"""
@ -100,28 +105,17 @@ class RPC(object):
current_profit = trade.calc_profit_percent(current_rate)
fmt_close_profit = (f'{round(trade.close_profit * 100, 2):.2f}%'
if trade.close_profit else None)
results.append(dict(
trade_id=trade.id,
pair=trade.pair,
trade_dict = trade.to_json()
trade_dict.update(dict(
base_currency=self._freqtrade.config['stake_currency'],
date=arrow.get(trade.open_date),
open_rate=trade.open_rate,
close_rate=trade.close_rate,
current_rate=current_rate,
amount=round(trade.amount, 8),
stake_amount=round(trade.stake_amount, 8),
close_profit=fmt_close_profit,
current_rate=current_rate,
current_profit=round(current_profit * 100, 2),
stop_loss=trade.stop_loss,
stop_loss_pct=(trade.stop_loss_pct * 100)
if trade.stop_loss_pct else None,
initial_stop_loss=trade.initial_stop_loss,
initial_stop_loss_pct=(trade.initial_stop_loss_pct * 100)
if trade.initial_stop_loss_pct else None,
open_order='({} {} rem={:.8f})'.format(
order['type'], order['side'], order['remaining']
) if order else None,
))
results.append(trade_dict)
return results
def _rpc_status_table(self) -> DataFrame:
@ -287,11 +281,12 @@ class RPC(object):
rate = 1.0
else:
try:
if coin == 'USDT':
rate = 1.0 / self._freqtrade.get_sell_rate('BTC/USDT', False)
if coin in('USDT', 'USD', 'EUR'):
rate = 1.0 / self._freqtrade.get_sell_rate('BTC/' + coin, False)
else:
rate = self._freqtrade.get_sell_rate(coin + '/BTC', False)
except (TemporaryError, DependencyException):
logger.warning(f" Could not get rate for pair {coin}.")
continue
est_btc: float = rate * balance['total']
total = total + est_btc
@ -346,7 +341,7 @@ class RPC(object):
return {'status': 'No more buy will occur from now. Run /reload_conf to reset.'}
def _rpc_forcesell(self, trade_id) -> None:
def _rpc_forcesell(self, trade_id) -> Dict[str, str]:
"""
Handler for forcesell <id>.
Sells the given trade at current price
@ -386,7 +381,7 @@ class RPC(object):
for trade in Trade.get_open_trades():
_exec_forcesell(trade)
Trade.session.flush()
return
return {'result': 'Created sell orders for all open trades.'}
# Query for trade
trade = Trade.query.filter(
@ -401,6 +396,7 @@ class RPC(object):
_exec_forcesell(trade)
Trade.session.flush()
return {'result': f'Created sell order for trade {trade_id}.'}
def _rpc_forcebuy(self, pair: str, price: Optional[float]) -> Optional[Trade]:
"""
@ -474,7 +470,7 @@ class RPC(object):
}
return res
def _rpc_blacklist(self, add: List[str]) -> Dict:
def _rpc_blacklist(self, add: List[str] = None) -> Dict:
""" Returns the currently active blacklist"""
if add:
stake_currency = self._freqtrade.config.get('stake_currency')

View File

@ -29,6 +29,12 @@ class RPCManager(object):
from freqtrade.rpc.webhook import Webhook
self.registered_modules.append(Webhook(freqtrade))
# Enable local rest api server for cmd line control
if freqtrade.config.get('api_server', {}).get('enabled', False):
logger.info('Enabling rpc.api_server')
from freqtrade.rpc.api_server import ApiServer
self.registered_modules.append(ApiServer(freqtrade))
def cleanup(self) -> None:
""" Stops all enabled rpc modules """
logger.info('Cleaning up rpc modules ...')

View File

@ -132,7 +132,7 @@ class Telegram(RPC):
msg['stake_amount_fiat'] = 0
message = ("*{exchange}:* Buying {pair}\n"
"with limit `{limit:.8f}\n"
"at rate `{limit:.8f}\n"
"({stake_amount:.6f} {stake_currency}").format(**msg)
if msg.get('fiat_currency', None):
@ -144,7 +144,7 @@ class Telegram(RPC):
msg['profit_percent'] = round(msg['profit_percent'] * 100, 2)
message = ("*{exchange}:* Selling {pair}\n"
"*Limit:* `{limit:.8f}`\n"
"*Rate:* `{limit:.8f}`\n"
"*Amount:* `{amount:.8f}`\n"
"*Open Rate:* `{open_rate:.8f}`\n"
"*Current Rate:* `{current_rate:.8f}`\n"
@ -193,14 +193,11 @@ class Telegram(RPC):
try:
results = self._rpc_trade_status()
# pre format data
for result in results:
result['date'] = result['date'].humanize()
messages = []
for r in results:
lines = [
"*Trade ID:* `{trade_id}` `(since {date})`",
"*Trade ID:* `{trade_id}` `(since {open_date_hum})`",
"*Current Pair:* {pair}",
"*Amount:* `{amount} ({stake_amount} {base_currency})`",
"*Open Rate:* `{open_rate:.8f}`",
@ -413,7 +410,9 @@ class Telegram(RPC):
trade_id = update.message.text.replace('/forcesell', '').strip()
try:
self._rpc_forcesell(trade_id)
msg = self._rpc_forcesell(trade_id)
self._send_msg('Forcesell Result: `{result}`'.format(**msg), bot=bot)
except RPCException as e:
self._send_msg(str(e), bot=bot)

View File

@ -18,11 +18,11 @@ class State(Enum):
class RunMode(Enum):
"""
Bot running mode (backtest, hyperopt, ...)
can be "live", "dry-run", "backtest", "edgecli", "hyperopt".
can be "live", "dry-run", "backtest", "edge", "hyperopt".
"""
LIVE = "live"
DRY_RUN = "dry_run"
BACKTEST = "backtest"
EDGECLI = "edgecli"
EDGE = "edge"
HYPEROPT = "hyperopt"
OTHER = "other" # Used for plotting scripts and test

View File

@ -6,6 +6,7 @@ from freqtrade.strategy.interface import IStrategy
# Import Default-Strategy to have hyperopt correctly resolve
from freqtrade.strategy.default_strategy import DefaultStrategy # noqa: F401
logger = logging.getLogger(__name__)
@ -16,7 +17,6 @@ def import_strategy(strategy: IStrategy, config: dict) -> IStrategy:
"""
# Copy all attributes from base class and class
comb = {**strategy.__class__.__dict__, **strategy.__dict__}
# Delete '_abc_impl' from dict as deepcopy fails on 3.7 with
@ -26,6 +26,7 @@ def import_strategy(strategy: IStrategy, config: dict) -> IStrategy:
del comb['_abc_impl']
attr = deepcopy(comb)
# Adjust module name
attr['__module__'] = 'freqtrade.strategy'

View File

@ -13,10 +13,11 @@ import arrow
from pandas import DataFrame
from freqtrade.data.dataprovider import DataProvider
from freqtrade.misc import timeframe_to_minutes
from freqtrade.exchange import timeframe_to_minutes
from freqtrade.persistence import Trade
from freqtrade.wallets import Wallets
logger = logging.getLogger(__name__)
@ -157,7 +158,7 @@ class IStrategy(ABC):
"""
Parses the given ticker history and returns a populated DataFrame
add several TA indicators and buy signal to it
:return DataFrame with ticker data and indicator data
:return: DataFrame with ticker data and indicator data
"""
pair = str(metadata.get('pair'))
@ -307,14 +308,16 @@ class IStrategy(ABC):
if trailing_stop:
# trailing stoploss handling
sl_offset = self.config.get('trailing_stop_positive_offset') or 0.0
tsl_only_offset = self.config.get('trailing_only_offset_is_reached', False)
# Make sure current_profit is calculated using high for backtesting.
high_profit = current_profit if not high else trade.calc_profit_percent(high)
# Don't update stoploss if trailing_only_offset_is_reached is true.
if not (tsl_only_offset and current_profit < sl_offset):
if not (tsl_only_offset and high_profit < sl_offset):
# Specific handling for trailing_stop_positive
if 'trailing_stop_positive' in self.config and current_profit > sl_offset:
if 'trailing_stop_positive' in self.config and high_profit > sl_offset:
# Ignore mypy error check in configuration that this is a float
stop_loss_value = self.config.get('trailing_stop_positive') # type: ignore
logger.debug(f"using positive stop loss: {stop_loss_value} "
@ -328,8 +331,9 @@ class IStrategy(ABC):
(not self.order_types.get('stoploss_on_exchange'))):
selltype = SellType.STOP_LOSS
# If Trailing stop (and max-rate did move above open rate)
if trailing_stop and trade.open_rate != trade.max_rate:
# If initial stoploss is not the same as current one then it is trailing.
if trade.initial_stop_loss != trade.stop_loss:
selltype = SellType.TRAILING_STOP_LOSS
logger.debug(
f"HIT STOP: current price at {current_rate:.6f}, "
@ -347,7 +351,7 @@ class IStrategy(ABC):
"""
Based an earlier trade and current price and ROI configuration, decides whether bot should
sell. Requires current_profit to be in percent!!
:return True if bot should sell at current rate
:return: True if bot should sell at current rate
"""
# Check if time matches and current rate is above threshold
@ -376,6 +380,7 @@ class IStrategy(ABC):
:param metadata: Additional information, like the currently traded pair
:return: a Dataframe with all mandatory indicators for the strategies
"""
logger.debug(f"Populating indicators for pair {metadata.get('pair')}.")
if self._populate_fun_len == 2:
warnings.warn("deprecated - check out the Sample strategy to see "
"the current function headers!", DeprecationWarning)
@ -391,6 +396,7 @@ class IStrategy(ABC):
:param pair: Additional information, like the currently traded pair
:return: DataFrame with buy column
"""
logger.debug(f"Populating buy signals for pair {metadata.get('pair')}.")
if self._buy_fun_len == 2:
warnings.warn("deprecated - check out the Sample strategy to see "
"the current function headers!", DeprecationWarning)
@ -406,6 +412,7 @@ class IStrategy(ABC):
:param pair: Additional information, like the currently traded pair
:return: DataFrame with sell column
"""
logger.debug(f"Populating sell signals for pair {metadata.get('pair')}.")
if self._sell_fun_len == 2:
warnings.warn("deprecated - check out the Sample strategy to see "
"the current function headers!", DeprecationWarning)

View File

@ -2,15 +2,19 @@
import json
import logging
import re
from copy import deepcopy
from datetime import datetime
from functools import reduce
from pathlib import Path
from typing import List
from unittest.mock import MagicMock, PropertyMock
import arrow
import pytest
from telegram import Chat, Message, Update
from freqtrade import constants
from freqtrade import constants, persistence
from freqtrade.arguments import Arguments
from freqtrade.data.converter import parse_ticker_dataframe
from freqtrade.edge import Edge, PairInfo
from freqtrade.exchange import Exchange
@ -35,6 +39,10 @@ def log_has_re(line, logs):
False)
def get_args(args) -> List[str]:
return Arguments(args, '').get_parsed_arg()
def patch_exchange(mocker, api_mock=None, id='bittrex') -> None:
mocker.patch('freqtrade.exchange.Exchange._load_markets', MagicMock(return_value={}))
mocker.patch('freqtrade.exchange.Exchange.validate_pairs', MagicMock())
@ -53,7 +61,7 @@ def get_patched_exchange(mocker, config, api_mock=None, id='bittrex') -> Exchang
patch_exchange(mocker, api_mock, id)
config["exchange"]["name"] = id
try:
exchange = ExchangeResolver(id.title(), config).exchange
exchange = ExchangeResolver(id, config).exchange
except ImportError:
exchange = Exchange(config)
return exchange
@ -96,22 +104,44 @@ def patch_freqtradebot(mocker, config) -> None:
:return: None
"""
mocker.patch('freqtrade.freqtradebot.RPCManager', MagicMock())
mocker.patch('freqtrade.freqtradebot.persistence.init', MagicMock())
persistence.init(config['db_url'])
patch_exchange(mocker, None)
mocker.patch('freqtrade.freqtradebot.RPCManager._init', MagicMock())
mocker.patch('freqtrade.freqtradebot.RPCManager.send_msg', MagicMock())
def get_patched_freqtradebot(mocker, config) -> FreqtradeBot:
"""
This function patches _init_modules() to not call dependencies
:param mocker: a Mocker object to apply patches
:param config: Config to pass to the bot
:return: FreqtradeBot
"""
patch_freqtradebot(mocker, config)
return FreqtradeBot(config)
def get_patched_worker(mocker, config) -> Worker:
"""
This function patches _init_modules() to not call dependencies
:param mocker: a Mocker object to apply patches
:param config: Config to pass to the bot
:return: Worker
"""
patch_freqtradebot(mocker, config)
return Worker(args=None, config=config)
def patch_get_signal(freqtrade: FreqtradeBot, value=(True, False)) -> None:
"""
:param mocker: mocker to patch IStrategy class
:param value: which value IStrategy.get_signal() must return
:return: None
"""
freqtrade.strategy.get_signal = lambda e, s, t: value
freqtrade.exchange.refresh_latest_ohlcv = lambda p: None
@pytest.fixture(autouse=True)
def patch_coinmarketcap(mocker) -> None:
"""
@ -134,6 +164,11 @@ def patch_coinmarketcap(mocker) -> None:
)
@pytest.fixture(scope='function')
def init_persistence(default_conf):
persistence.init(default_conf['db_url'], default_conf['dry_run'])
@pytest.fixture(scope="function")
def default_conf():
""" Returns validated configuration suitable for most tests """
@ -639,7 +674,7 @@ def ticker_history_list():
@pytest.fixture
def ticker_history(ticker_history_list):
return parse_ticker_dataframe(ticker_history_list, "5m", True)
return parse_ticker_dataframe(ticker_history_list, "5m", pair="UNITTEST/BTC", fill_missing=True)
@pytest.fixture
@ -843,8 +878,9 @@ def tickers():
@pytest.fixture
def result():
with open('freqtrade/tests/testdata/UNITTEST_BTC-1m.json') as data_file:
return parse_ticker_dataframe(json.load(data_file), '1m', True)
with Path('freqtrade/tests/testdata/UNITTEST_BTC-1m.json').open('r') as data_file:
return parse_ticker_dataframe(json.load(data_file), '1m', pair="UNITTEST/BTC",
fill_missing=True)
# FIX:
# Create an fixture/function
@ -942,9 +978,10 @@ def buy_order_fee():
@pytest.fixture(scope="function")
def edge_conf(default_conf):
default_conf['max_open_trades'] = -1
default_conf['stake_amount'] = constants.UNLIMITED_STAKE_AMOUNT
default_conf['edge'] = {
conf = deepcopy(default_conf)
conf['max_open_trades'] = -1
conf['stake_amount'] = constants.UNLIMITED_STAKE_AMOUNT
conf['edge'] = {
"enabled": True,
"process_throttle_secs": 1800,
"calculate_since_number_of_days": 14,
@ -960,4 +997,40 @@ def edge_conf(default_conf):
"remove_pumps": False
}
return default_conf
return conf
@pytest.fixture
def rpc_balance():
return {
'BTC': {
'total': 12.0,
'free': 12.0,
'used': 0.0
},
'ETH': {
'total': 0.0,
'free': 0.0,
'used': 0.0
},
'USDT': {
'total': 10000.0,
'free': 10000.0,
'used': 0.0
},
'LTC': {
'total': 10.0,
'free': 10.0,
'used': 0.0
},
'XRP': {
'total': 1.0,
'free': 1.0,
'used': 0.0
},
'EUR': {
'total': 10.0,
'free': 10.0,
'used': 0.0
},
}

View File

@ -1,8 +1,15 @@
import pytest
from pandas import DataFrame
from unittest.mock import MagicMock
from freqtrade.data.btanalysis import BT_DATA_COLUMNS, load_backtest_data
from freqtrade.data.history import make_testdata_path
from arrow import Arrow
import pytest
from pandas import DataFrame, to_datetime
from freqtrade.arguments import TimeRange
from freqtrade.data.btanalysis import (BT_DATA_COLUMNS,
extract_trades_of_period,
load_backtest_data, load_trades_from_db)
from freqtrade.data.history import load_pair_history, make_testdata_path
from freqtrade.tests.test_persistence import create_mock_trades
def test_load_backtest_data():
@ -19,3 +26,51 @@ def test_load_backtest_data():
with pytest.raises(ValueError, match=r"File .* does not exist\."):
load_backtest_data(str("filename") + "nofile")
@pytest.mark.usefixtures("init_persistence")
def test_load_trades_db(default_conf, fee, mocker):
create_mock_trades(fee)
# remove init so it does not init again
init_mock = mocker.patch('freqtrade.persistence.init', MagicMock())
trades = load_trades_from_db(db_url=default_conf['db_url'])
assert init_mock.call_count == 1
assert len(trades) == 3
assert isinstance(trades, DataFrame)
assert "pair" in trades.columns
assert "open_time" in trades.columns
def test_extract_trades_of_period():
pair = "UNITTEST/BTC"
timerange = TimeRange(None, 'line', 0, -1000)
data = load_pair_history(pair=pair, ticker_interval='1m',
datadir=None, timerange=timerange)
# timerange = 2017-11-14 06:07 - 2017-11-14 22:58:00
trades = DataFrame(
{'pair': [pair, pair, pair, pair],
'profit_percent': [0.0, 0.1, -0.2, -0.5],
'profit_abs': [0.0, 1, -2, -5],
'open_time': to_datetime([Arrow(2017, 11, 13, 15, 40, 0).datetime,
Arrow(2017, 11, 14, 9, 41, 0).datetime,
Arrow(2017, 11, 14, 14, 20, 0).datetime,
Arrow(2017, 11, 15, 3, 40, 0).datetime,
], utc=True
),
'close_time': to_datetime([Arrow(2017, 11, 13, 16, 40, 0).datetime,
Arrow(2017, 11, 14, 10, 41, 0).datetime,
Arrow(2017, 11, 14, 15, 25, 0).datetime,
Arrow(2017, 11, 15, 3, 55, 0).datetime,
], utc=True)
})
trades1 = extract_trades_of_period(data, trades)
# First and last trade are dropped as they are out of range
assert len(trades1) == 2
assert trades1.iloc[0].open_time == Arrow(2017, 11, 14, 9, 41, 0).datetime
assert trades1.iloc[0].close_time == Arrow(2017, 11, 14, 10, 41, 0).datetime
assert trades1.iloc[-1].open_time == Arrow(2017, 11, 14, 14, 20, 0).datetime
assert trades1.iloc[-1].close_time == Arrow(2017, 11, 14, 15, 25, 0).datetime

View File

@ -2,8 +2,7 @@
import logging
from freqtrade.data.converter import parse_ticker_dataframe, ohlcv_fill_up_missing_data
from freqtrade.data.history import load_pair_history
from freqtrade.optimize import validate_backtest_data, get_timeframe
from freqtrade.data.history import load_pair_history, validate_backtest_data, get_timeframe
from freqtrade.tests.conftest import log_has
@ -16,7 +15,8 @@ def test_parse_ticker_dataframe(ticker_history_list, caplog):
caplog.set_level(logging.DEBUG)
# Test file with BV data
dataframe = parse_ticker_dataframe(ticker_history_list, '5m', fill_missing=True)
dataframe = parse_ticker_dataframe(ticker_history_list, '5m',
pair="UNITTEST/BTC", fill_missing=True)
assert dataframe.columns.tolist() == columns
assert log_has('Parsing tickerlist to dataframe', caplog.record_tuples)
@ -28,18 +28,19 @@ def test_ohlcv_fill_up_missing_data(caplog):
pair='UNITTEST/BTC',
fill_up_missing=False)
caplog.set_level(logging.DEBUG)
data2 = ohlcv_fill_up_missing_data(data, '1m')
data2 = ohlcv_fill_up_missing_data(data, '1m', 'UNITTEST/BTC')
assert len(data2) > len(data)
# Column names should not change
assert (data.columns == data2.columns).all()
assert log_has(f"Missing data fillup: before: {len(data)} - after: {len(data2)}",
assert log_has(f"Missing data fillup for UNITTEST/BTC: before: "
f"{len(data)} - after: {len(data2)}",
caplog.record_tuples)
# Test fillup actually fixes invalid backtest data
min_date, max_date = get_timeframe({'UNITTEST/BTC': data})
assert validate_backtest_data({'UNITTEST/BTC': data}, min_date, max_date, 1)
assert not validate_backtest_data({'UNITTEST/BTC': data2}, min_date, max_date, 1)
assert validate_backtest_data(data, 'UNITTEST/BTC', min_date, max_date, 1)
assert not validate_backtest_data(data2, 'UNITTEST/BTC', min_date, max_date, 1)
def test_ohlcv_fill_up_missing_data2(caplog):
@ -79,10 +80,10 @@ def test_ohlcv_fill_up_missing_data2(caplog):
]
# Generate test-data without filling missing
data = parse_ticker_dataframe(ticks, ticker_interval, fill_missing=False)
data = parse_ticker_dataframe(ticks, ticker_interval, pair="UNITTEST/BTC", fill_missing=False)
assert len(data) == 3
caplog.set_level(logging.DEBUG)
data2 = ohlcv_fill_up_missing_data(data, ticker_interval)
data2 = ohlcv_fill_up_missing_data(data, ticker_interval, "UNITTEST/BTC")
assert len(data2) == 4
# 3rd candle has been filled
row = data2.loc[2, :]
@ -95,5 +96,55 @@ def test_ohlcv_fill_up_missing_data2(caplog):
# Column names should not change
assert (data.columns == data2.columns).all()
assert log_has(f"Missing data fillup: before: {len(data)} - after: {len(data2)}",
assert log_has(f"Missing data fillup for UNITTEST/BTC: before: "
f"{len(data)} - after: {len(data2)}",
caplog.record_tuples)
def test_ohlcv_drop_incomplete(caplog):
ticker_interval = '1d'
ticks = [[
1559750400000, # 2019-06-04
8.794e-05, # open
8.948e-05, # high
8.794e-05, # low
8.88e-05, # close
2255, # volume (in quote currency)
],
[
1559836800000, # 2019-06-05
8.88e-05,
8.942e-05,
8.88e-05,
8.893e-05,
9911,
],
[
1559923200000, # 2019-06-06
8.891e-05,
8.893e-05,
8.875e-05,
8.877e-05,
2251
],
[
1560009600000, # 2019-06-07
8.877e-05,
8.883e-05,
8.895e-05,
8.817e-05,
123551
]
]
caplog.set_level(logging.DEBUG)
data = parse_ticker_dataframe(ticks, ticker_interval, pair="UNITTEST/BTC",
fill_missing=False, drop_incomplete=False)
assert len(data) == 4
assert not log_has("Dropping last candle", caplog.record_tuples)
# Drop last candle
data = parse_ticker_dataframe(ticks, ticker_interval, pair="UNITTEST/BTC",
fill_missing=False, drop_incomplete=True)
assert len(data) == 3
assert log_has("Dropping last candle", caplog.record_tuples)

View File

@ -2,24 +2,27 @@
import json
import os
from pathlib import Path
import uuid
from pathlib import Path
from shutil import copyfile
from unittest.mock import MagicMock
import arrow
from pandas import DataFrame
import pytest
from pandas import DataFrame
from freqtrade import OperationalException
from freqtrade.arguments import TimeRange
from freqtrade.data import history
from freqtrade.data.history import (download_pair_history,
load_cached_data_for_updating,
load_tickerdata_file,
make_testdata_path,
load_tickerdata_file, make_testdata_path,
trim_tickerlist)
from freqtrade.exchange import timeframe_to_minutes
from freqtrade.misc import file_dump_json
from freqtrade.tests.conftest import get_patched_exchange, log_has
from freqtrade.strategy.default_strategy import DefaultStrategy
from freqtrade.tests.conftest import (get_patched_exchange, log_has,
patch_exchange)
# Change this if modifying UNITTEST/BTC testdatafile
_BTC_UNITTEST_LENGTH = 13681
@ -59,7 +62,11 @@ def _clean_test_file(file: str) -> None:
def test_load_data_30min_ticker(mocker, caplog, default_conf) -> None:
ld = history.load_pair_history(pair='UNITTEST/BTC', ticker_interval='30m', datadir=None)
assert isinstance(ld, DataFrame)
assert not log_has('Download the pair: "UNITTEST/BTC", Interval: 30m', caplog.record_tuples)
assert not log_has(
'Download history data for pair: "UNITTEST/BTC", interval: 30m '
'and store in None.',
caplog.record_tuples
)
def test_load_data_7min_ticker(mocker, caplog, default_conf) -> None:
@ -67,8 +74,11 @@ def test_load_data_7min_ticker(mocker, caplog, default_conf) -> None:
assert not isinstance(ld, DataFrame)
assert ld is None
assert log_has(
'No data for pair: "UNITTEST/BTC", Interval: 7m. '
'Use --refresh-pairs-cached to download the data', caplog.record_tuples)
'No history data for pair: "UNITTEST/BTC", interval: 7m. '
'Use --refresh-pairs-cached option or download_backtest_data.py '
'script to download the data',
caplog.record_tuples
)
def test_load_data_1min_ticker(ticker_history, mocker, caplog) -> None:
@ -77,7 +87,11 @@ def test_load_data_1min_ticker(ticker_history, mocker, caplog) -> None:
_backup_file(file, copy_file=True)
history.load_data(datadir=None, ticker_interval='1m', pairs=['UNITTEST/BTC'])
assert os.path.isfile(file) is True
assert not log_has('Download the pair: "UNITTEST/BTC", Interval: 1m', caplog.record_tuples)
assert not log_has(
'Download history data for pair: "UNITTEST/BTC", interval: 1m '
'and store in None.',
caplog.record_tuples
)
_clean_test_file(file)
@ -96,9 +110,12 @@ def test_load_data_with_new_pair_1min(ticker_history_list, mocker, caplog, defau
refresh_pairs=False,
pair='MEME/BTC')
assert os.path.isfile(file) is False
assert log_has('No data for pair: "MEME/BTC", Interval: 1m. '
'Use --refresh-pairs-cached to download the data',
caplog.record_tuples)
assert log_has(
'No history data for pair: "MEME/BTC", interval: 1m. '
'Use --refresh-pairs-cached option or download_backtest_data.py '
'script to download the data',
caplog.record_tuples
)
# download a new pair if refresh_pairs is set
history.load_pair_history(datadir=None,
@ -107,7 +124,11 @@ def test_load_data_with_new_pair_1min(ticker_history_list, mocker, caplog, defau
exchange=exchange,
pair='MEME/BTC')
assert os.path.isfile(file) is True
assert log_has('Download the pair: "MEME/BTC", Interval: 1m', caplog.record_tuples)
assert log_has(
'Download history data for pair: "MEME/BTC", interval: 1m '
'and store in None.',
caplog.record_tuples
)
with pytest.raises(OperationalException, match=r'Exchange needs to be initialized when.*'):
history.load_pair_history(datadir=None,
ticker_interval='1m',
@ -117,6 +138,31 @@ def test_load_data_with_new_pair_1min(ticker_history_list, mocker, caplog, defau
_clean_test_file(file)
def test_load_data_live(default_conf, mocker, caplog) -> None:
refresh_mock = MagicMock()
mocker.patch("freqtrade.exchange.Exchange.refresh_latest_ohlcv", refresh_mock)
exchange = get_patched_exchange(mocker, default_conf)
history.load_data(datadir=None, ticker_interval='5m',
pairs=['UNITTEST/BTC', 'UNITTEST2/BTC'],
live=True,
exchange=exchange)
assert refresh_mock.call_count == 1
assert len(refresh_mock.call_args_list[0][0][0]) == 2
assert log_has('Live: Downloading data for all defined pairs ...', caplog.record_tuples)
def test_load_data_live_noexchange(default_conf, mocker, caplog) -> None:
with pytest.raises(OperationalException,
match=r'Exchange needs to be initialized when using live data.'):
history.load_data(datadir=None, ticker_interval='5m',
pairs=['UNITTEST/BTC', 'UNITTEST2/BTC'],
exchange=None,
live=True,
)
def test_testdata_path() -> None:
assert str(Path('freqtrade') / 'tests' / 'testdata') in str(make_testdata_path(None))
@ -287,7 +333,7 @@ def test_download_pair_history2(mocker, default_conf) -> None:
def test_download_backtesting_data_exception(ticker_history, mocker, caplog, default_conf) -> None:
mocker.patch('freqtrade.exchange.Exchange.get_history',
side_effect=BaseException('File Error'))
side_effect=Exception('File Error'))
exchange = get_patched_exchange(mocker, default_conf)
@ -302,7 +348,11 @@ def test_download_backtesting_data_exception(ticker_history, mocker, caplog, def
# clean files freshly downloaded
_clean_test_file(file1_1)
_clean_test_file(file1_5)
assert log_has('Failed to download the pair: "MEME/BTC", Interval: 1m', caplog.record_tuples)
assert log_has(
'Failed to download history data for pair: "MEME/BTC", interval: 1m. '
'Error: File Error',
caplog.record_tuples
)
def test_load_tickerdata_file() -> None:
@ -473,3 +523,62 @@ def test_file_dump_json_tofile() -> None:
# Remove the file
_clean_test_file(file)
def test_get_timeframe(default_conf, mocker) -> None:
patch_exchange(mocker)
strategy = DefaultStrategy(default_conf)
data = strategy.tickerdata_to_dataframe(
history.load_data(
datadir=None,
ticker_interval='1m',
pairs=['UNITTEST/BTC']
)
)
min_date, max_date = history.get_timeframe(data)
assert min_date.isoformat() == '2017-11-04T23:02:00+00:00'
assert max_date.isoformat() == '2017-11-14T22:58:00+00:00'
def test_validate_backtest_data_warn(default_conf, mocker, caplog) -> None:
patch_exchange(mocker)
strategy = DefaultStrategy(default_conf)
data = strategy.tickerdata_to_dataframe(
history.load_data(
datadir=None,
ticker_interval='1m',
pairs=['UNITTEST/BTC'],
fill_up_missing=False
)
)
min_date, max_date = history.get_timeframe(data)
caplog.clear()
assert history.validate_backtest_data(data['UNITTEST/BTC'], 'UNITTEST/BTC',
min_date, max_date, timeframe_to_minutes('1m'))
assert len(caplog.record_tuples) == 1
assert log_has(
"UNITTEST/BTC has missing frames: expected 14396, got 13680, that's 716 missing values",
caplog.record_tuples)
def test_validate_backtest_data(default_conf, mocker, caplog) -> None:
patch_exchange(mocker)
strategy = DefaultStrategy(default_conf)
timerange = TimeRange('index', 'index', 200, 250)
data = strategy.tickerdata_to_dataframe(
history.load_data(
datadir=None,
ticker_interval='5m',
pairs=['UNITTEST/BTC'],
timerange=timerange
)
)
min_date, max_date = history.get_timeframe(data)
caplog.clear()
assert not history.validate_backtest_data(data['UNITTEST/BTC'], 'UNITTEST/BTC',
min_date, max_date, timeframe_to_minutes('5m'))
assert len(caplog.record_tuples) == 0

View File

@ -10,10 +10,11 @@ import numpy as np
import pytest
from pandas import DataFrame, to_datetime
from freqtrade import OperationalException
from freqtrade.data.converter import parse_ticker_dataframe
from freqtrade.edge import Edge, PairInfo
from freqtrade.strategy.interface import SellType
from freqtrade.tests.conftest import get_patched_freqtradebot
from freqtrade.tests.conftest import get_patched_freqtradebot, log_has
from freqtrade.tests.optimize import (BTContainer, BTrade,
_build_backtest_dataframe,
_get_frame_time_from_offset)
@ -30,7 +31,50 @@ ticker_start_time = arrow.get(2018, 10, 3)
ticker_interval_in_minute = 60
_ohlc = {'date': 0, 'buy': 1, 'open': 2, 'high': 3, 'low': 4, 'close': 5, 'sell': 6, 'volume': 7}
# Helpers for this test file
def _validate_ohlc(buy_ohlc_sell_matrice):
for index, ohlc in enumerate(buy_ohlc_sell_matrice):
# if not high < open < low or not high < close < low
if not ohlc[3] >= ohlc[2] >= ohlc[4] or not ohlc[3] >= ohlc[5] >= ohlc[4]:
raise Exception('Line ' + str(index + 1) + ' of ohlc has invalid values!')
return True
def _build_dataframe(buy_ohlc_sell_matrice):
_validate_ohlc(buy_ohlc_sell_matrice)
tickers = []
for ohlc in buy_ohlc_sell_matrice:
ticker = {
'date': ticker_start_time.shift(
minutes=(
ohlc[0] *
ticker_interval_in_minute)).timestamp *
1000,
'buy': ohlc[1],
'open': ohlc[2],
'high': ohlc[3],
'low': ohlc[4],
'close': ohlc[5],
'sell': ohlc[6]}
tickers.append(ticker)
frame = DataFrame(tickers)
frame['date'] = to_datetime(frame['date'],
unit='ms',
utc=True,
infer_datetime_format=True)
return frame
def _time_on_candle(number):
return np.datetime64(ticker_start_time.shift(
minutes=(number * ticker_interval_in_minute)).timestamp * 1000, 'ms')
# End helper functions
# Open trade should be removed from the end
tc0 = BTContainer(data=[
# D O H L C V B S
@ -203,46 +247,6 @@ def test_nonexisting_stake_amount(mocker, edge_conf):
assert edge.stake_amount('N/O', 1, 2, 1) == 0.15
def _validate_ohlc(buy_ohlc_sell_matrice):
for index, ohlc in enumerate(buy_ohlc_sell_matrice):
# if not high < open < low or not high < close < low
if not ohlc[3] >= ohlc[2] >= ohlc[4] or not ohlc[3] >= ohlc[5] >= ohlc[4]:
raise Exception('Line ' + str(index + 1) + ' of ohlc has invalid values!')
return True
def _build_dataframe(buy_ohlc_sell_matrice):
_validate_ohlc(buy_ohlc_sell_matrice)
tickers = []
for ohlc in buy_ohlc_sell_matrice:
ticker = {
'date': ticker_start_time.shift(
minutes=(
ohlc[0] *
ticker_interval_in_minute)).timestamp *
1000,
'buy': ohlc[1],
'open': ohlc[2],
'high': ohlc[3],
'low': ohlc[4],
'close': ohlc[5],
'sell': ohlc[6]}
tickers.append(ticker)
frame = DataFrame(tickers)
frame['date'] = to_datetime(frame['date'],
unit='ms',
utc=True,
infer_datetime_format=True)
return frame
def _time_on_candle(number):
return np.datetime64(ticker_start_time.shift(
minutes=(number * ticker_interval_in_minute)).timestamp * 1000, 'ms')
def test_edge_heartbeat_calculate(mocker, edge_conf):
freqtrade = get_patched_freqtradebot(mocker, edge_conf)
edge = Edge(edge_conf, freqtrade.exchange, freqtrade.strategy)
@ -259,7 +263,7 @@ def mocked_load_data(datadir, pairs=[], ticker_interval='0m', refresh_pairs=Fals
hz = 0.1
base = 0.001
ETHBTC = [
NEOBTC = [
[
ticker_start_time.shift(minutes=(x * ticker_interval_in_minute)).timestamp * 1000,
math.sin(x * hz) / 1000 + base,
@ -281,8 +285,8 @@ def mocked_load_data(datadir, pairs=[], ticker_interval='0m', refresh_pairs=Fals
123.45
] for x in range(0, 500)]
pairdata = {'NEO/BTC': parse_ticker_dataframe(ETHBTC, '1h', fill_missing=True),
'LTC/BTC': parse_ticker_dataframe(LTCBTC, '1h', fill_missing=True)}
pairdata = {'NEO/BTC': parse_ticker_dataframe(NEOBTC, '1h', pair="NEO/BTC", fill_missing=True),
'LTC/BTC': parse_ticker_dataframe(LTCBTC, '1h', pair="LTC/BTC", fill_missing=True)}
return pairdata
@ -298,6 +302,40 @@ def test_edge_process_downloaded_data(mocker, edge_conf):
assert edge._last_updated <= arrow.utcnow().timestamp + 2
def test_edge_process_no_data(mocker, edge_conf, caplog):
edge_conf['datadir'] = None
freqtrade = get_patched_freqtradebot(mocker, edge_conf)
mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.001))
mocker.patch('freqtrade.data.history.load_data', MagicMock(return_value={}))
edge = Edge(edge_conf, freqtrade.exchange, freqtrade.strategy)
assert not edge.calculate()
assert len(edge._cached_pairs) == 0
assert log_has("No data found. Edge is stopped ...", caplog.record_tuples)
assert edge._last_updated == 0
def test_edge_process_no_trades(mocker, edge_conf, caplog):
edge_conf['datadir'] = None
freqtrade = get_patched_freqtradebot(mocker, edge_conf)
mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.001))
mocker.patch('freqtrade.data.history.load_data', mocked_load_data)
# Return empty
mocker.patch('freqtrade.edge.Edge._find_trades_for_stoploss_range', MagicMock(return_value=[]))
edge = Edge(edge_conf, freqtrade.exchange, freqtrade.strategy)
assert not edge.calculate()
assert len(edge._cached_pairs) == 0
assert log_has("No trades found.", caplog.record_tuples)
def test_edge_init_error(mocker, edge_conf,):
edge_conf['stake_amount'] = 0.5
mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.001))
with pytest.raises(OperationalException, match='Edge works only with unlimited stake amount'):
get_patched_freqtradebot(mocker, edge_conf)
def test_process_expectancy(mocker, edge_conf):
edge_conf['edge']['min_trade_number'] = 2
freqtrade = get_patched_freqtradebot(mocker, edge_conf)
@ -360,3 +398,11 @@ def test_process_expectancy(mocker, edge_conf):
assert round(final['TEST/BTC'].risk_reward_ratio, 10) == 306.5384615384
assert round(final['TEST/BTC'].required_risk_reward, 10) == 2.0
assert round(final['TEST/BTC'].expectancy, 10) == 101.5128205128
# Pop last item so no trade is profitable
trades.pop()
trades_df = DataFrame(trades)
trades_df = edge._fill_calculable_fields(trades_df)
final = edge._process_expectancy(trades_df)
assert len(final) == 0
assert isinstance(final, dict)

View File

@ -124,14 +124,14 @@ def test_exchange_resolver(default_conf, mocker, caplog):
caplog.record_tuples)
caplog.clear()
exchange = ExchangeResolver('Kraken', default_conf).exchange
exchange = ExchangeResolver('kraken', default_conf).exchange
assert isinstance(exchange, Exchange)
assert isinstance(exchange, Kraken)
assert not isinstance(exchange, Binance)
assert not log_has_re(r"No .* specific subclass found. Using the generic class instead.",
caplog.record_tuples)
exchange = ExchangeResolver('Binance', default_conf).exchange
exchange = ExchangeResolver('binance', default_conf).exchange
assert isinstance(exchange, Exchange)
assert isinstance(exchange, Binance)
assert not isinstance(exchange, Kraken)
@ -301,6 +301,20 @@ def test__reload_markets(default_conf, mocker, caplog):
assert log_has('Performing scheduled market reload..', caplog.record_tuples)
def test__reload_markets_exception(default_conf, mocker, caplog):
caplog.set_level(logging.DEBUG)
api_mock = MagicMock()
api_mock.load_markets = MagicMock(side_effect=ccxt.NetworkError)
default_conf['exchange']['markets_refresh_interval'] = 10
exchange = get_patched_exchange(mocker, default_conf, api_mock, id="binance")
# less than 10 minutes have passed, no reload
exchange._reload_markets()
assert exchange._last_markets_refresh == 0
assert log_has_re(r"Could not reload markets.*", caplog.record_tuples)
def test_validate_pairs(default_conf, mocker): # test exchange.validate_pairs directly
api_mock = MagicMock()
type(api_mock).markets = PropertyMock(return_value={
@ -1002,7 +1016,7 @@ def test_refresh_latest_ohlcv(mocker, default_conf, caplog) -> None:
exchange.refresh_latest_ohlcv([('IOTA/ETH', '5m'), ('XRP/ETH', '5m')])
assert exchange._api_async.fetch_ohlcv.call_count == 2
assert log_has(f"Using cached ohlcv data for {pairs[0][0]}, {pairs[0][1]} ...",
assert log_has(f"Using cached ohlcv data for pair {pairs[0][0]}, interval {pairs[0][1]} ...",
caplog.record_tuples)
@ -1421,3 +1435,30 @@ def test_stoploss_limit_order_dry_run(default_conf, mocker):
assert order['type'] == order_type
assert order['price'] == 220
assert order['amount'] == 1
def test_merge_ft_has_dict(default_conf, mocker):
mocker.patch('freqtrade.exchange.Exchange._init_ccxt', MagicMock(return_value=MagicMock()))
mocker.patch('freqtrade.exchange.Exchange._load_async_markets', MagicMock())
mocker.patch('freqtrade.exchange.Exchange.validate_pairs', MagicMock())
mocker.patch('freqtrade.exchange.Exchange.validate_timeframes', MagicMock())
ex = Exchange(default_conf)
assert ex._ft_has == Exchange._ft_has_default
ex = Kraken(default_conf)
assert ex._ft_has == Exchange._ft_has_default
# Binance defines different values
ex = Binance(default_conf)
assert ex._ft_has != Exchange._ft_has_default
assert ex._ft_has['stoploss_on_exchange']
assert ex._ft_has['order_time_in_force'] == ['gtc', 'fok', 'ioc']
conf = copy.deepcopy(default_conf)
conf['exchange']['_ft_has_params'] = {"DeadBeef": 20,
"stoploss_on_exchange": False}
# Use settings from configuration (overriding stoploss_on_exchange)
ex = Binance(conf)
assert ex._ft_has != Exchange._ft_has_default
assert not ex._ft_has['stoploss_on_exchange']
assert ex._ft_has['DeadBeef'] == 20

View File

@ -3,7 +3,7 @@ from typing import NamedTuple, List
import arrow
from pandas import DataFrame
from freqtrade.misc import timeframe_to_minutes
from freqtrade.exchange import timeframe_to_minutes
from freqtrade.strategy.interface import SellType
ticker_start_time = arrow.get(2018, 10, 3)
@ -29,6 +29,10 @@ class BTContainer(NamedTuple):
trades: List[BTrade]
profit_perc: float
trailing_stop: bool = False
trailing_only_offset_is_reached: bool = False
trailing_stop_positive: float = None
trailing_stop_positive_offset: float = 0.0
use_sell_signal: bool = False
def _get_frame_time_from_offset(offset):

View File

@ -2,17 +2,32 @@
import logging
from unittest.mock import MagicMock
from pandas import DataFrame
import pytest
from pandas import DataFrame
from freqtrade.optimize import get_timeframe
from freqtrade.data.history import get_timeframe
from freqtrade.optimize.backtesting import Backtesting
from freqtrade.strategy.interface import SellType
from freqtrade.tests.optimize import (BTrade, BTContainer, _build_backtest_dataframe,
_get_frame_time_from_offset, tests_ticker_interval)
from freqtrade.tests.conftest import patch_exchange
from freqtrade.tests.optimize import (BTContainer, BTrade,
_build_backtest_dataframe,
_get_frame_time_from_offset,
tests_ticker_interval)
# Test 0 Sell signal sell
# Test with Stop-loss at 1%
# TC0: Sell signal in candle 3
tc0 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
[1, 5000, 5025, 4975, 4987, 6172, 0, 0], # enter trade (signal on last candle)
[2, 4987, 5012, 4986, 4600, 6172, 0, 0], # exit with stoploss hit
[3, 5010, 5000, 4980, 5010, 6172, 0, 1],
[4, 5010, 4987, 4977, 4995, 6172, 0, 0],
[5, 4995, 4995, 4995, 4950, 6172, 0, 0]],
stop_loss=-0.01, roi=1, profit_perc=0.002, use_sell_signal=True,
trades=[BTrade(sell_reason=SellType.SELL_SIGNAL, open_tick=1, close_tick=4)]
)
# Test 1 Minus 8% Close
# Test with Stop-loss at 1%
@ -146,7 +161,7 @@ tc8 = BTContainer(data=[
# Test 9 - trailing_stop should raise - high and low in same candle.
# Candle Data for test 9
# Set stop-loss at 10%, ROI at 10% (should not apply)
# TC9: Trailing stoploss - stoploss should be adjusted candle 2
# TC9: Trailing stoploss - stoploss should be adjusted candle 3
tc9 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5050, 4950, 5000, 6172, 1, 0],
@ -158,7 +173,59 @@ tc9 = BTContainer(data=[
trades=[BTrade(sell_reason=SellType.TRAILING_STOP_LOSS, open_tick=1, close_tick=3)]
)
# Test 10 - trailing_stop should raise so candle 3 causes a stoploss
# without applying trailing_stop_positive since stoploss_offset is at 10%.
# Set stop-loss at 10%, ROI at 10% (should not apply)
# TC10: Trailing stoploss - stoploss should be adjusted candle 2
tc10 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5050, 4950, 5000, 6172, 1, 0],
[1, 5000, 5050, 4950, 5100, 6172, 0, 0],
[2, 5100, 5251, 5100, 5100, 6172, 0, 0],
[3, 4850, 5050, 4650, 4750, 6172, 0, 0],
[4, 4750, 4950, 4350, 4750, 6172, 0, 0]],
stop_loss=-0.10, roi=0.10, profit_perc=-0.1, trailing_stop=True,
trailing_only_offset_is_reached=True, trailing_stop_positive_offset=0.10,
trailing_stop_positive=0.03,
trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=4)]
)
# Test 11 - trailing_stop should raise so candle 3 causes a stoploss
# applying a positive trailing stop of 3% since stop_positive_offset is reached.
# Set stop-loss at 10%, ROI at 10% (should not apply)
# TC11: Trailing stoploss - stoploss should be adjusted candle 2,
tc11 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5050, 4950, 5000, 6172, 1, 0],
[1, 5000, 5050, 4950, 5100, 6172, 0, 0],
[2, 5100, 5251, 5100, 5100, 6172, 0, 0],
[3, 4850, 5050, 4650, 4750, 6172, 0, 0],
[4, 4750, 4950, 4350, 4750, 6172, 0, 0]],
stop_loss=-0.10, roi=0.10, profit_perc=0.019, trailing_stop=True,
trailing_only_offset_is_reached=True, trailing_stop_positive_offset=0.05,
trailing_stop_positive=0.03,
trades=[BTrade(sell_reason=SellType.TRAILING_STOP_LOSS, open_tick=1, close_tick=3)]
)
# Test 12 - trailing_stop should raise in candle 2 and cause a stoploss in the same candle
# applying a positive trailing stop of 3% since stop_positive_offset is reached.
# Set stop-loss at 10%, ROI at 10% (should not apply)
# TC12: Trailing stoploss - stoploss should be adjusted candle 2,
tc12 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5050, 4950, 5000, 6172, 1, 0],
[1, 5000, 5050, 4950, 5100, 6172, 0, 0],
[2, 5100, 5251, 4650, 5100, 6172, 0, 0],
[3, 4850, 5050, 4650, 4750, 6172, 0, 0],
[4, 4750, 4950, 4350, 4750, 6172, 0, 0]],
stop_loss=-0.10, roi=0.10, profit_perc=0.019, trailing_stop=True,
trailing_only_offset_is_reached=True, trailing_stop_positive_offset=0.05,
trailing_stop_positive=0.03,
trades=[BTrade(sell_reason=SellType.TRAILING_STOP_LOSS, open_tick=1, close_tick=2)]
)
TESTS = [
tc0,
tc1,
tc2,
tc3,
@ -168,6 +235,9 @@ TESTS = [
tc7,
tc8,
tc9,
tc10,
tc11,
tc12,
]
@ -180,6 +250,13 @@ def test_backtest_results(default_conf, fee, mocker, caplog, data) -> None:
default_conf["minimal_roi"] = {"0": data.roi}
default_conf["ticker_interval"] = tests_ticker_interval
default_conf["trailing_stop"] = data.trailing_stop
default_conf["trailing_only_offset_is_reached"] = data.trailing_only_offset_is_reached
# Only add this to configuration If it's necessary
if data.trailing_stop_positive:
default_conf["trailing_stop_positive"] = data.trailing_stop_positive
default_conf["trailing_stop_positive_offset"] = data.trailing_stop_positive_offset
default_conf["experimental"] = {"use_sell_signal": data.use_sell_signal}
mocker.patch("freqtrade.exchange.Exchange.get_fee", MagicMock(return_value=0.0))
patch_exchange(mocker)
frame = _build_backtest_dataframe(data.data)

View File

@ -3,7 +3,6 @@
import json
import math
import random
from typing import List
from unittest.mock import MagicMock
import numpy as np
@ -12,28 +11,24 @@ import pytest
from arrow import Arrow
from freqtrade import DependencyException, constants
from freqtrade.arguments import Arguments, TimeRange
from freqtrade.arguments import TimeRange
from freqtrade.data import history
from freqtrade.data.btanalysis import evaluate_result_multi
from freqtrade.data.converter import parse_ticker_dataframe
from freqtrade.data.dataprovider import DataProvider
from freqtrade.optimize import get_timeframe
from freqtrade.optimize.backtesting import (Backtesting, setup_configuration,
start)
from freqtrade.data.history import get_timeframe
from freqtrade.optimize import setup_configuration, start_backtesting
from freqtrade.optimize.backtesting import Backtesting
from freqtrade.state import RunMode
from freqtrade.strategy.default_strategy import DefaultStrategy
from freqtrade.strategy.interface import SellType
from freqtrade.tests.conftest import log_has, patch_exchange
def get_args(args) -> List[str]:
return Arguments(args, '').get_parsed_arg()
from freqtrade.tests.conftest import get_args, log_has, log_has_re, patch_exchange
def trim_dictlist(dict_list, num):
new = {}
for pair, pair_data in dict_list.items():
new[pair] = pair_data[num:]
new[pair] = pair_data[num:].reset_index()
return new
@ -78,7 +73,8 @@ def load_data_test(what):
pair[x][5] # Keep old volume
] for x in range(0, datalen)
]
return {'UNITTEST/BTC': parse_ticker_dataframe(data, '1m', fill_missing=True)}
return {'UNITTEST/BTC': parse_ticker_dataframe(data, '1m', pair="UNITTEST/BTC",
fill_missing=True)}
def simple_backtest(config, contour, num_results, mocker) -> None:
@ -105,9 +101,10 @@ def simple_backtest(config, contour, num_results, mocker) -> None:
def mocked_load_data(datadir, pairs=[], ticker_interval='0m', refresh_pairs=False,
timerange=None, exchange=None):
timerange=None, exchange=None, live=False):
tickerdata = history.load_tickerdata_file(datadir, 'UNITTEST/BTC', '1m', timerange=timerange)
pairdata = {'UNITTEST/BTC': parse_ticker_dataframe(tickerdata, '1m', fill_missing=True)}
pairdata = {'UNITTEST/BTC': parse_ticker_dataframe(tickerdata, '1m', pair="UNITTEST/BTC",
fill_missing=True)}
return pairdata
@ -178,7 +175,7 @@ def test_setup_configuration_without_arguments(mocker, default_conf, caplog) ->
'backtesting'
]
config = setup_configuration(get_args(args))
config = setup_configuration(get_args(args), RunMode.BACKTEST)
assert 'max_open_trades' in config
assert 'stake_currency' in config
assert 'stake_amount' in config
@ -190,7 +187,7 @@ def test_setup_configuration_without_arguments(mocker, default_conf, caplog) ->
caplog.record_tuples
)
assert 'ticker_interval' in config
assert not log_has('Parameter -i/--ticker-interval detected ...', caplog.record_tuples)
assert not log_has_re('Parameter -i/--ticker-interval detected .*', caplog.record_tuples)
assert 'live' not in config
assert not log_has('Parameter -l/--live detected ...', caplog.record_tuples)
@ -228,7 +225,7 @@ def test_setup_bt_configuration_with_arguments(mocker, default_conf, caplog) ->
'--export-filename', 'foo_bar.json'
]
config = setup_configuration(get_args(args))
config = setup_configuration(get_args(args), RunMode.BACKTEST)
assert 'max_open_trades' in config
assert 'stake_currency' in config
assert 'stake_amount' in config
@ -242,11 +239,8 @@ def test_setup_bt_configuration_with_arguments(mocker, default_conf, caplog) ->
caplog.record_tuples
)
assert 'ticker_interval' in config
assert log_has('Parameter -i/--ticker-interval detected ...', caplog.record_tuples)
assert log_has(
'Using ticker_interval: 1m ...',
caplog.record_tuples
)
assert log_has('Parameter -i/--ticker-interval detected ... Using ticker_interval: 1m ...',
caplog.record_tuples)
assert 'live' in config
assert log_has('Parameter -l/--live detected ...', caplog.record_tuples)
@ -260,6 +254,7 @@ def test_setup_bt_configuration_with_arguments(mocker, default_conf, caplog) ->
assert 'refresh_pairs' in config
assert log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog.record_tuples)
assert 'timerange' in config
assert log_has(
'Parameter --timerange detected: {} ...'.format(config['timerange']),
@ -292,7 +287,7 @@ def test_setup_configuration_unlimited_stake_amount(mocker, default_conf, caplog
]
with pytest.raises(DependencyException, match=r'.*stake amount.*'):
setup_configuration(get_args(args))
setup_configuration(get_args(args), RunMode.BACKTEST)
def test_start(mocker, fee, default_conf, caplog) -> None:
@ -309,7 +304,7 @@ def test_start(mocker, fee, default_conf, caplog) -> None:
'backtesting'
]
args = get_args(args)
start(args)
start_backtesting(args)
assert log_has(
'Starting freqtrade in Backtesting mode',
caplog.record_tuples
@ -357,7 +352,8 @@ def test_tickerdata_to_dataframe_bt(default_conf, mocker) -> None:
patch_exchange(mocker)
timerange = TimeRange(None, 'line', 0, -100)
tick = history.load_tickerdata_file(None, 'UNITTEST/BTC', '1m', timerange=timerange)
tickerlist = {'UNITTEST/BTC': parse_ticker_dataframe(tick, '1m', fill_missing=True)}
tickerlist = {'UNITTEST/BTC': parse_ticker_dataframe(tick, '1m', pair="UNITTEST/BTC",
fill_missing=True)}
backtesting = Backtesting(default_conf)
data = backtesting.strategy.tickerdata_to_dataframe(tickerlist)
@ -474,7 +470,7 @@ def test_backtesting_start(default_conf, mocker, caplog) -> None:
return Arrow(2017, 11, 14, 21, 17), Arrow(2017, 11, 14, 22, 59)
mocker.patch('freqtrade.data.history.load_data', mocked_load_data)
mocker.patch('freqtrade.optimize.get_timeframe', get_timeframe)
mocker.patch('freqtrade.data.history.get_timeframe', get_timeframe)
mocker.patch('freqtrade.exchange.Exchange.refresh_latest_ohlcv', MagicMock())
patch_exchange(mocker)
mocker.patch.multiple(
@ -494,10 +490,9 @@ def test_backtesting_start(default_conf, mocker, caplog) -> None:
backtesting.start()
# check the logs, that will contain the backtest result
exists = [
'Using local backtesting data (using whitelist in given config) ...',
'Using stake_currency: BTC ...',
'Using stake_amount: 0.001 ...',
'Measuring data from 2017-11-14T21:17:00+00:00 '
'Backtesting with data from 2017-11-14T21:17:00+00:00 '
'up to 2017-11-14T22:59:00+00:00 (0 days)..'
]
for line in exists:
@ -509,7 +504,7 @@ def test_backtesting_start_no_data(default_conf, mocker, caplog) -> None:
return Arrow(2017, 11, 14, 21, 17), Arrow(2017, 11, 14, 22, 59)
mocker.patch('freqtrade.data.history.load_data', MagicMock(return_value={}))
mocker.patch('freqtrade.optimize.get_timeframe', get_timeframe)
mocker.patch('freqtrade.data.history.get_timeframe', get_timeframe)
mocker.patch('freqtrade.exchange.Exchange.refresh_latest_ohlcv', MagicMock())
patch_exchange(mocker)
mocker.patch.multiple(
@ -710,7 +705,7 @@ def test_backtest_multi_pair(default_conf, fee, mocker, tres, pair):
data = trim_dictlist(data, -500)
# Remove data for one pair from the beginning of the data
data[pair] = data[pair][tres:]
data[pair] = data[pair][tres:].reset_index()
# We need to enable sell-signal - otherwise it sells on ROI!!
default_conf['experimental'] = {"use_sell_signal": True}
default_conf['ticker_interval'] = '5m'
@ -849,19 +844,19 @@ def test_backtest_start_live(default_conf, mocker, caplog):
'--disable-max-market-positions'
]
args = get_args(args)
start(args)
start_backtesting(args)
# check the logs, that will contain the backtest result
exists = [
'Parameter -i/--ticker-interval detected ...',
'Using ticker_interval: 1m ...',
'Parameter -i/--ticker-interval detected ... Using ticker_interval: 1m ...',
'Parameter -l/--live detected ...',
'Ignoring max_open_trades (--disable-max-market-positions was used) ...',
'Parameter --timerange detected: -100 ...',
'Using data folder: freqtrade/tests/testdata ...',
'Using stake_currency: BTC ...',
'Using stake_amount: 0.001 ...',
'Downloading data for all pairs in whitelist ...',
'Measuring data from 2017-11-14T19:31:00+00:00 up to 2017-11-14T22:58:00+00:00 (0 days)..',
'Live: Downloading data for all defined pairs ...',
'Backtesting with data from 2017-11-14T19:31:00+00:00 '
'up to 2017-11-14T22:58:00+00:00 (0 days)..',
'Parameter --enable-position-stacking detected ...'
]
@ -903,7 +898,7 @@ def test_backtest_start_multi_strat(default_conf, mocker, caplog):
'TestStrategy',
]
args = get_args(args)
start(args)
start_backtesting(args)
# 2 backtests, 4 tables
assert backtestmock.call_count == 2
assert gen_table_mock.call_count == 4
@ -911,16 +906,16 @@ def test_backtest_start_multi_strat(default_conf, mocker, caplog):
# check the logs, that will contain the backtest result
exists = [
'Parameter -i/--ticker-interval detected ...',
'Using ticker_interval: 1m ...',
'Parameter -i/--ticker-interval detected ... Using ticker_interval: 1m ...',
'Parameter -l/--live detected ...',
'Ignoring max_open_trades (--disable-max-market-positions was used) ...',
'Parameter --timerange detected: -100 ...',
'Using data folder: freqtrade/tests/testdata ...',
'Using stake_currency: BTC ...',
'Using stake_amount: 0.001 ...',
'Downloading data for all pairs in whitelist ...',
'Measuring data from 2017-11-14T19:31:00+00:00 up to 2017-11-14T22:58:00+00:00 (0 days)..',
'Live: Downloading data for all defined pairs ...',
'Backtesting with data from 2017-11-14T19:31:00+00:00 '
'up to 2017-11-14T22:58:00+00:00 (0 days)..',
'Parameter --enable-position-stacking detected ...',
'Running backtesting for Strategy DefaultStrategy',
'Running backtesting for Strategy TestStrategy',

View File

@ -1,18 +1,14 @@
# pragma pylint: disable=missing-docstring, C0103, C0330
# pragma pylint: disable=protected-access, too-many-lines, invalid-name, too-many-arguments
from unittest.mock import MagicMock
import json
from typing import List
from unittest.mock import MagicMock
from freqtrade.edge import PairInfo
from freqtrade.arguments import Arguments
from freqtrade.optimize.edge_cli import (EdgeCli, setup_configuration, start)
from freqtrade.optimize import setup_configuration, start_edge
from freqtrade.optimize.edge_cli import EdgeCli
from freqtrade.state import RunMode
from freqtrade.tests.conftest import log_has, patch_exchange
def get_args(args) -> List[str]:
return Arguments(args, '').get_parsed_arg()
from freqtrade.tests.conftest import get_args, log_has, log_has_re, patch_exchange
def test_setup_configuration_without_arguments(mocker, default_conf, caplog) -> None:
@ -26,8 +22,8 @@ def test_setup_configuration_without_arguments(mocker, default_conf, caplog) ->
'edge'
]
config = setup_configuration(get_args(args))
assert config['runmode'] == RunMode.EDGECLI
config = setup_configuration(get_args(args), RunMode.EDGE)
assert config['runmode'] == RunMode.EDGE
assert 'max_open_trades' in config
assert 'stake_currency' in config
@ -40,7 +36,7 @@ def test_setup_configuration_without_arguments(mocker, default_conf, caplog) ->
caplog.record_tuples
)
assert 'ticker_interval' in config
assert not log_has('Parameter -i/--ticker-interval detected ...', caplog.record_tuples)
assert not log_has_re('Parameter -i/--ticker-interval detected .*', caplog.record_tuples)
assert 'refresh_pairs' not in config
assert not log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog.record_tuples)
@ -66,24 +62,21 @@ def test_setup_edge_configuration_with_arguments(mocker, edge_conf, caplog) -> N
'--stoplosses=-0.01,-0.10,-0.001'
]
config = setup_configuration(get_args(args))
config = setup_configuration(get_args(args), RunMode.EDGE)
assert 'max_open_trades' in config
assert 'stake_currency' in config
assert 'stake_amount' in config
assert 'exchange' in config
assert 'pair_whitelist' in config['exchange']
assert 'datadir' in config
assert config['runmode'] == RunMode.EDGECLI
assert config['runmode'] == RunMode.EDGE
assert log_has(
'Using data folder: {} ...'.format(config['datadir']),
caplog.record_tuples
)
assert 'ticker_interval' in config
assert log_has('Parameter -i/--ticker-interval detected ...', caplog.record_tuples)
assert log_has(
'Using ticker_interval: 1m ...',
caplog.record_tuples
)
assert log_has('Parameter -i/--ticker-interval detected ... Using ticker_interval: 1m ...',
caplog.record_tuples)
assert 'refresh_pairs' in config
assert log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog.record_tuples)
@ -108,7 +101,7 @@ def test_start(mocker, fee, edge_conf, caplog) -> None:
'edge'
]
args = get_args(args)
start(args)
start_edge(args)
assert log_has(
'Starting freqtrade in Edge mode',
caplog.record_tuples
@ -118,8 +111,10 @@ def test_start(mocker, fee, edge_conf, caplog) -> None:
def test_edge_init(mocker, edge_conf) -> None:
patch_exchange(mocker)
edge_conf['stake_amount'] = 20
edge_cli = EdgeCli(edge_conf)
assert edge_cli.config == edge_conf
assert edge_cli.config['stake_amount'] == 'unlimited'
assert callable(edge_cli.edge.calculate)

View File

@ -1,18 +1,22 @@
# pragma pylint: disable=missing-docstring,W0212,C0103
from datetime import datetime
import json
import os
from datetime import datetime
from unittest.mock import MagicMock
from filelock import Timeout
import pandas as pd
import pytest
from freqtrade import DependencyException
from freqtrade.data.converter import parse_ticker_dataframe
from freqtrade.data.history import load_tickerdata_file
from freqtrade.optimize.hyperopt import Hyperopt, start
from freqtrade.optimize.default_hyperopt import DefaultHyperOpts
from freqtrade.resolvers import StrategyResolver, HyperOptResolver
from freqtrade.tests.conftest import log_has, patch_exchange
from freqtrade.tests.optimize.test_backtesting import get_args
from freqtrade.optimize.hyperopt import Hyperopt, HYPEROPT_LOCKFILE
from freqtrade.optimize import setup_configuration, start_hyperopt
from freqtrade.resolvers.hyperopt_resolver import HyperOptResolver
from freqtrade.state import RunMode
from freqtrade.tests.conftest import get_args, log_has, log_has_re, patch_exchange
@pytest.fixture(scope='function')
@ -39,6 +43,110 @@ def create_trials(mocker, hyperopt) -> None:
return [{'loss': 1, 'result': 'foo', 'params': {}}]
def test_setup_hyperopt_configuration_without_arguments(mocker, default_conf, caplog) -> None:
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
args = [
'--config', 'config.json',
'hyperopt'
]
config = setup_configuration(get_args(args), RunMode.HYPEROPT)
assert 'max_open_trades' in config
assert 'stake_currency' in config
assert 'stake_amount' in config
assert 'exchange' in config
assert 'pair_whitelist' in config['exchange']
assert 'datadir' in config
assert log_has(
'Using data folder: {} ...'.format(config['datadir']),
caplog.record_tuples
)
assert 'ticker_interval' in config
assert not log_has_re('Parameter -i/--ticker-interval detected .*', caplog.record_tuples)
assert 'live' not in config
assert not log_has('Parameter -l/--live detected ...', caplog.record_tuples)
assert 'position_stacking' not in config
assert not log_has('Parameter --enable-position-stacking detected ...', caplog.record_tuples)
assert 'refresh_pairs' not in config
assert not log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog.record_tuples)
assert 'timerange' not in config
assert 'runmode' in config
assert config['runmode'] == RunMode.HYPEROPT
def test_setup_hyperopt_configuration_with_arguments(mocker, default_conf, caplog) -> None:
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
mocker.patch('freqtrade.configuration.Configuration._create_datadir', lambda s, c, x: x)
args = [
'--config', 'config.json',
'--datadir', '/foo/bar',
'hyperopt',
'--ticker-interval', '1m',
'--timerange', ':100',
'--refresh-pairs-cached',
'--enable-position-stacking',
'--disable-max-market-positions',
'--epochs', '1000',
'--spaces', 'all',
'--print-all'
]
config = setup_configuration(get_args(args), RunMode.HYPEROPT)
assert 'max_open_trades' in config
assert 'stake_currency' in config
assert 'stake_amount' in config
assert 'exchange' in config
assert 'pair_whitelist' in config['exchange']
assert 'datadir' in config
assert config['runmode'] == RunMode.HYPEROPT
assert log_has(
'Using data folder: {} ...'.format(config['datadir']),
caplog.record_tuples
)
assert 'ticker_interval' in config
assert log_has('Parameter -i/--ticker-interval detected ... Using ticker_interval: 1m ...',
caplog.record_tuples)
assert 'position_stacking' in config
assert log_has('Parameter --enable-position-stacking detected ...', caplog.record_tuples)
assert 'use_max_market_positions' in config
assert log_has('Parameter --disable-max-market-positions detected ...', caplog.record_tuples)
assert log_has('max_open_trades set to unlimited ...', caplog.record_tuples)
assert 'refresh_pairs' in config
assert log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog.record_tuples)
assert 'timerange' in config
assert log_has(
'Parameter --timerange detected: {} ...'.format(config['timerange']),
caplog.record_tuples
)
assert 'epochs' in config
assert log_has('Parameter --epochs detected ... Will run Hyperopt with for 1000 epochs ...',
caplog.record_tuples)
assert 'spaces' in config
assert log_has(
'Parameter -s/--spaces detected: {}'.format(config['spaces']),
caplog.record_tuples
)
assert 'print_all' in config
assert log_has('Parameter --print-all detected ...', caplog.record_tuples)
def test_hyperoptresolver(mocker, default_conf, caplog) -> None:
mocker.patch(
@ -59,6 +167,7 @@ def test_hyperoptresolver(mocker, default_conf, caplog) -> None:
"Using populate_sell_trend from DefaultStrategy.", caplog.record_tuples)
assert log_has("Custom Hyperopt does not provide populate_buy_trend. "
"Using populate_buy_trend from DefaultStrategy.", caplog.record_tuples)
assert hasattr(x, "ticker_interval")
def test_start(mocker, default_conf, caplog) -> None:
@ -72,13 +181,11 @@ def test_start(mocker, default_conf, caplog) -> None:
args = [
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'hyperopt',
'--epochs', '5'
]
args = get_args(args)
StrategyResolver({'strategy': 'DefaultStrategy'})
start(args)
start_hyperopt(args)
import pprint
pprint.pprint(caplog.record_tuples)
@ -90,6 +197,33 @@ def test_start(mocker, default_conf, caplog) -> None:
assert start_mock.call_count == 1
def test_start_no_data(mocker, default_conf, caplog) -> None:
mocker.patch(
'freqtrade.configuration.Configuration._load_config_file',
lambda *args, **kwargs: default_conf
)
mocker.patch('freqtrade.optimize.hyperopt.load_data', MagicMock(return_value={}))
mocker.patch(
'freqtrade.optimize.hyperopt.get_timeframe',
MagicMock(return_value=(datetime(2017, 12, 10), datetime(2017, 12, 13)))
)
patch_exchange(mocker)
args = [
'--config', 'config.json',
'hyperopt',
'--epochs', '5'
]
args = get_args(args)
start_hyperopt(args)
import pprint
pprint.pprint(caplog.record_tuples)
assert log_has('No data found. Terminating.', caplog.record_tuples)
def test_start_failure(mocker, default_conf, caplog) -> None:
start_mock = MagicMock()
mocker.patch(
@ -106,17 +240,37 @@ def test_start_failure(mocker, default_conf, caplog) -> None:
'--epochs', '5'
]
args = get_args(args)
StrategyResolver({'strategy': 'DefaultStrategy'})
with pytest.raises(ValueError):
start(args)
with pytest.raises(DependencyException):
start_hyperopt(args)
assert log_has(
"Please don't use --strategy for hyperopt.",
caplog.record_tuples
)
def test_start_filelock(mocker, default_conf, caplog) -> None:
start_mock = MagicMock(side_effect=Timeout(HYPEROPT_LOCKFILE))
mocker.patch(
'freqtrade.configuration.Configuration._load_config_file',
lambda *args, **kwargs: default_conf
)
mocker.patch('freqtrade.optimize.hyperopt.Hyperopt.start', start_mock)
patch_exchange(mocker)
args = [
'--config', 'config.json',
'hyperopt',
'--epochs', '5'
]
args = get_args(args)
start_hyperopt(args)
assert log_has(
"Another running instance of freqtrade Hyperopt detected.",
caplog.record_tuples
)
def test_loss_calculation_prefer_correct_trade_count(hyperopt) -> None:
StrategyResolver({'strategy': 'DefaultStrategy'})
correct = hyperopt.calculate_loss(1, hyperopt.target_trades, 20)
over = hyperopt.calculate_loss(1, hyperopt.target_trades + 100, 20)
@ -146,11 +300,12 @@ def test_log_results_if_loss_improves(hyperopt, capsys) -> None:
'loss': 1,
'current_tries': 1,
'total_tries': 2,
'result': 'foo'
'result': 'foo.',
'initial_point': False
}
)
out, err = capsys.readouterr()
assert ' 1/2: foo. Loss 1.00000' in out
assert ' 2/2: foo. Objective: 1.00000' in out
def test_no_log_if_loss_does_not_improve(hyperopt, caplog) -> None:
@ -206,26 +361,32 @@ def test_roi_table_generation(hyperopt) -> None:
def test_start_calls_optimizer(mocker, default_conf, caplog) -> None:
dumper = mocker.patch('freqtrade.optimize.hyperopt.dump', MagicMock())
mocker.patch('freqtrade.optimize.hyperopt.load_data', MagicMock())
mocker.patch('freqtrade.optimize.hyperopt.multiprocessing.cpu_count', MagicMock(return_value=1))
mocker.patch(
'freqtrade.optimize.hyperopt.get_timeframe',
MagicMock(return_value=(datetime(2017, 12, 10), datetime(2017, 12, 13)))
)
parallel = mocker.patch(
'freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel',
MagicMock(return_value=[{'loss': 1, 'result': 'foo result', 'params': {}}])
)
patch_exchange(mocker)
default_conf.update({'config': 'config.json.example'})
default_conf.update({'epochs': 1})
default_conf.update({'timerange': None})
default_conf.update({'spaces': 'all'})
default_conf.update({'config': 'config.json.example',
'epochs': 1,
'timerange': None,
'spaces': 'all',
'hyperopt_jobs': 1, })
hyperopt = Hyperopt(default_conf)
hyperopt.strategy.tickerdata_to_dataframe = MagicMock()
hyperopt.start()
parallel.assert_called_once()
assert 'Best result:\nfoo result\nwith values:\n\n' in caplog.text
assert log_has('Best result:\nfoo result\nwith values:\n', caplog.record_tuples)
assert dumper.called
# Should be called twice, once for tickerdata, once to save evaluations
assert dumper.call_count == 2
def test_format_results(hyperopt):
@ -266,7 +427,8 @@ def test_has_space(hyperopt):
def test_populate_indicators(hyperopt) -> None:
tick = load_tickerdata_file(None, 'UNITTEST/BTC', '1m')
tickerlist = {'UNITTEST/BTC': parse_ticker_dataframe(tick, '1m', fill_missing=True)}
tickerlist = {'UNITTEST/BTC': parse_ticker_dataframe(tick, '1m', pair="UNITTEST/BTC",
fill_missing=True)}
dataframes = hyperopt.strategy.tickerdata_to_dataframe(tickerlist)
dataframe = hyperopt.custom_hyperopt.populate_indicators(dataframes['UNITTEST/BTC'],
{'pair': 'UNITTEST/BTC'})
@ -279,7 +441,8 @@ def test_populate_indicators(hyperopt) -> None:
def test_buy_strategy_generator(hyperopt) -> None:
tick = load_tickerdata_file(None, 'UNITTEST/BTC', '1m')
tickerlist = {'UNITTEST/BTC': parse_ticker_dataframe(tick, '1m', fill_missing=True)}
tickerlist = {'UNITTEST/BTC': parse_ticker_dataframe(tick, '1m', pair="UNITTEST/BTC",
fill_missing=True)}
dataframes = hyperopt.strategy.tickerdata_to_dataframe(tickerlist)
dataframe = hyperopt.custom_hyperopt.populate_indicators(dataframes['UNITTEST/BTC'],
{'pair': 'UNITTEST/BTC'})
@ -307,6 +470,7 @@ def test_generate_optimizer(mocker, default_conf) -> None:
default_conf.update({'config': 'config.json.example'})
default_conf.update({'timerange': None})
default_conf.update({'spaces': 'all'})
default_conf.update({'hyperopt_min_trades': 1})
trades = [
('POWR/BTC', 0.023117, 0.000233, 100)
@ -355,7 +519,7 @@ def test_generate_optimizer(mocker, default_conf) -> None:
response_expected = {
'loss': 1.9840569076926293,
'result': ' 1 trades. Avg profit 2.31%. Total profit 0.00023300 BTC '
'(0.0231Σ%). Avg duration 100.0 mins.',
'( 2.31Σ%). Avg duration 100.0 mins.',
'params': optimizer_param
}

View File

@ -1,66 +0,0 @@
# pragma pylint: disable=missing-docstring, protected-access, C0103
from freqtrade import optimize
from freqtrade.arguments import TimeRange
from freqtrade.data import history
from freqtrade.misc import timeframe_to_minutes
from freqtrade.strategy.default_strategy import DefaultStrategy
from freqtrade.tests.conftest import log_has, patch_exchange
def test_get_timeframe(default_conf, mocker) -> None:
patch_exchange(mocker)
strategy = DefaultStrategy(default_conf)
data = strategy.tickerdata_to_dataframe(
history.load_data(
datadir=None,
ticker_interval='1m',
pairs=['UNITTEST/BTC']
)
)
min_date, max_date = optimize.get_timeframe(data)
assert min_date.isoformat() == '2017-11-04T23:02:00+00:00'
assert max_date.isoformat() == '2017-11-14T22:58:00+00:00'
def test_validate_backtest_data_warn(default_conf, mocker, caplog) -> None:
patch_exchange(mocker)
strategy = DefaultStrategy(default_conf)
data = strategy.tickerdata_to_dataframe(
history.load_data(
datadir=None,
ticker_interval='1m',
pairs=['UNITTEST/BTC'],
fill_up_missing=False
)
)
min_date, max_date = optimize.get_timeframe(data)
caplog.clear()
assert optimize.validate_backtest_data(data, min_date, max_date,
timeframe_to_minutes('1m'))
assert len(caplog.record_tuples) == 1
assert log_has(
"UNITTEST/BTC has missing frames: expected 14396, got 13680, that's 716 missing values",
caplog.record_tuples)
def test_validate_backtest_data(default_conf, mocker, caplog) -> None:
patch_exchange(mocker)
strategy = DefaultStrategy(default_conf)
timerange = TimeRange('index', 'index', 200, 250)
data = strategy.tickerdata_to_dataframe(
history.load_data(
datadir=None,
ticker_interval='5m',
pairs=['UNITTEST/BTC'],
timerange=timerange
)
)
min_date, max_date = optimize.get_timeframe(data)
caplog.clear()
assert not optimize.validate_backtest_data(data, min_date, max_date,
timeframe_to_minutes('5m'))
assert len(caplog.record_tuples) == 0

View File

@ -14,8 +14,7 @@ from freqtrade.persistence import Trade
from freqtrade.rpc import RPC, RPCException
from freqtrade.rpc.fiat_convert import CryptoToFiatConverter
from freqtrade.state import State
from freqtrade.tests.conftest import patch_exchange
from freqtrade.tests.test_freqtradebot import patch_get_signal
from freqtrade.tests.conftest import patch_exchange, patch_get_signal
# Functions for recurrent object patching
@ -47,12 +46,14 @@ def test_rpc_trade_status(default_conf, ticker, fee, markets, mocker) -> None:
freqtradebot.create_trade()
results = rpc._rpc_trade_status()
assert {
'trade_id': 1,
'pair': 'ETH/BTC',
'base_currency': 'BTC',
'date': ANY,
'open_date': ANY,
'open_date_hum': ANY,
'close_date': None,
'close_date_hum': None,
'open_rate': 1.099e-05,
'close_rate': None,
'current_rate': 1.098e-05,
@ -78,7 +79,10 @@ def test_rpc_trade_status(default_conf, ticker, fee, markets, mocker) -> None:
'trade_id': 1,
'pair': 'ETH/BTC',
'base_currency': 'BTC',
'date': ANY,
'open_date': ANY,
'open_date_hum': ANY,
'close_date': None,
'close_date_hum': None,
'open_rate': 1.099e-05,
'close_rate': None,
'current_rate': ANY,
@ -114,7 +118,7 @@ def test_rpc_status_table(default_conf, ticker, fee, markets, mocker) -> None:
freqtradebot.create_trade()
result = rpc._rpc_status_table()
assert 'just now' in result['Since'].all()
assert 'instantly' in result['Since'].all()
assert 'ETH/BTC' in result['Pair'].all()
assert '-0.59%' in result['Profit'].all()
@ -123,7 +127,7 @@ def test_rpc_status_table(default_conf, ticker, fee, markets, mocker) -> None:
# invalidate ticker cache
rpc._freqtrade.exchange._cached_ticker = {}
result = rpc._rpc_status_table()
assert 'just now' in result['Since'].all()
assert 'instantly' in result['Since'].all()
assert 'ETH/BTC' in result['Pair'].all()
assert 'nan%' in result['Profit'].all()
@ -463,12 +467,15 @@ def test_rpc_forcesell(default_conf, ticker, fee, mocker, markets) -> None:
with pytest.raises(RPCException, match=r'.*invalid argument*'):
rpc._rpc_forcesell(None)
rpc._rpc_forcesell('all')
msg = rpc._rpc_forcesell('all')
assert msg == {'result': 'Created sell orders for all open trades.'}
freqtradebot.create_trade()
rpc._rpc_forcesell('all')
msg = rpc._rpc_forcesell('all')
assert msg == {'result': 'Created sell orders for all open trades.'}
rpc._rpc_forcesell('1')
msg = rpc._rpc_forcesell('1')
assert msg == {'result': 'Created sell order for trade 1.'}
freqtradebot.state = State.STOPPED
with pytest.raises(RPCException, match=r'.*trader is not running*'):
@ -511,7 +518,8 @@ def test_rpc_forcesell(default_conf, ticker, fee, mocker, markets) -> None:
}
)
# check that the trade is called, which is done by ensuring exchange.cancel_order is called
rpc._rpc_forcesell('2')
msg = rpc._rpc_forcesell('2')
assert msg == {'result': 'Created sell order for trade 2.'}
assert cancel_order_mock.call_count == 2
assert trade.amount == amount
@ -525,7 +533,8 @@ def test_rpc_forcesell(default_conf, ticker, fee, mocker, markets) -> None:
'side': 'sell'
}
)
rpc._rpc_forcesell('3')
msg = rpc._rpc_forcesell('3')
assert msg == {'result': 'Created sell order for trade 3.'}
# status quo, no exchange calls
assert cancel_order_mock.call_count == 2

View File

@ -0,0 +1,556 @@
"""
Unit test file for rpc/api_server.py
"""
from datetime import datetime
from unittest.mock import ANY, MagicMock, PropertyMock
import pytest
from flask import Flask
from requests.auth import _basic_auth_str
from freqtrade.__init__ import __version__
from freqtrade.persistence import Trade
from freqtrade.rpc.api_server import BASE_URI, ApiServer
from freqtrade.state import State
from freqtrade.tests.conftest import (get_patched_freqtradebot, log_has,
patch_get_signal)
_TEST_USER = "FreqTrader"
_TEST_PASS = "SuperSecurePassword1!"
@pytest.fixture
def botclient(default_conf, mocker):
default_conf.update({"api_server": {"enabled": True,
"listen_ip_address": "127.0.0.1",
"listen_port": "8080",
"username": _TEST_USER,
"password": _TEST_PASS,
}})
ftbot = get_patched_freqtradebot(mocker, default_conf)
mocker.patch('freqtrade.rpc.api_server.ApiServer.run', MagicMock())
apiserver = ApiServer(ftbot)
yield ftbot, apiserver.app.test_client()
# Cleanup ... ?
def client_post(client, url, data={}):
return client.post(url,
content_type="application/json",
data=data,
headers={'Authorization': _basic_auth_str(_TEST_USER, _TEST_PASS)})
def client_get(client, url):
return client.get(url, headers={'Authorization': _basic_auth_str(_TEST_USER, _TEST_PASS)})
def assert_response(response, expected_code=200):
assert response.status_code == expected_code
assert response.content_type == "application/json"
def test_api_not_found(botclient):
ftbot, client = botclient
rc = client_post(client, f"{BASE_URI}/invalid_url")
assert_response(rc, 404)
assert rc.json == {"status": "error",
"reason": f"There's no API call for http://localhost{BASE_URI}/invalid_url.",
"code": 404
}
def test_api_unauthorized(botclient):
ftbot, client = botclient
# Don't send user/pass information
rc = client.get(f"{BASE_URI}/version")
assert_response(rc, 401)
assert rc.json == {'error': 'Unauthorized'}
# Change only username
ftbot.config['api_server']['username'] = "Ftrader"
rc = client_get(client, f"{BASE_URI}/version")
assert_response(rc, 401)
assert rc.json == {'error': 'Unauthorized'}
# Change only password
ftbot.config['api_server']['username'] = _TEST_USER
ftbot.config['api_server']['password'] = "WrongPassword"
rc = client_get(client, f"{BASE_URI}/version")
assert_response(rc, 401)
assert rc.json == {'error': 'Unauthorized'}
ftbot.config['api_server']['username'] = "Ftrader"
ftbot.config['api_server']['password'] = "WrongPassword"
rc = client_get(client, f"{BASE_URI}/version")
assert_response(rc, 401)
assert rc.json == {'error': 'Unauthorized'}
def test_api_stop_workflow(botclient):
ftbot, client = botclient
assert ftbot.state == State.RUNNING
rc = client_post(client, f"{BASE_URI}/stop")
assert_response(rc)
assert rc.json == {'status': 'stopping trader ...'}
assert ftbot.state == State.STOPPED
# Stop bot again
rc = client_post(client, f"{BASE_URI}/stop")
assert_response(rc)
assert rc.json == {'status': 'already stopped'}
# Start bot
rc = client_post(client, f"{BASE_URI}/start")
assert_response(rc)
assert rc.json == {'status': 'starting trader ...'}
assert ftbot.state == State.RUNNING
# Call start again
rc = client_post(client, f"{BASE_URI}/start")
assert_response(rc)
assert rc.json == {'status': 'already running'}
def test_api__init__(default_conf, mocker):
"""
Test __init__() method
"""
mocker.patch('freqtrade.rpc.telegram.Updater', MagicMock())
mocker.patch('freqtrade.rpc.api_server.ApiServer.run', MagicMock())
apiserver = ApiServer(get_patched_freqtradebot(mocker, default_conf))
assert apiserver._config == default_conf
def test_api_run(default_conf, mocker, caplog):
default_conf.update({"api_server": {"enabled": True,
"listen_ip_address": "127.0.0.1",
"listen_port": "8080"}})
mocker.patch('freqtrade.rpc.telegram.Updater', MagicMock())
mocker.patch('freqtrade.rpc.api_server.threading.Thread', MagicMock())
server_mock = MagicMock()
mocker.patch('freqtrade.rpc.api_server.make_server', server_mock)
apiserver = ApiServer(get_patched_freqtradebot(mocker, default_conf))
assert apiserver._config == default_conf
apiserver.run()
assert server_mock.call_count == 1
assert server_mock.call_args_list[0][0][0] == "127.0.0.1"
assert server_mock.call_args_list[0][0][1] == "8080"
assert isinstance(server_mock.call_args_list[0][0][2], Flask)
assert hasattr(apiserver, "srv")
assert log_has("Starting HTTP Server at 127.0.0.1:8080", caplog.record_tuples)
assert log_has("Starting Local Rest Server.", caplog.record_tuples)
# Test binding to public
caplog.clear()
server_mock.reset_mock()
apiserver._config.update({"api_server": {"enabled": True,
"listen_ip_address": "0.0.0.0",
"listen_port": "8089",
"password": "",
}})
apiserver.run()
assert server_mock.call_count == 1
assert server_mock.call_args_list[0][0][0] == "0.0.0.0"
assert server_mock.call_args_list[0][0][1] == "8089"
assert isinstance(server_mock.call_args_list[0][0][2], Flask)
assert log_has("Starting HTTP Server at 0.0.0.0:8089", caplog.record_tuples)
assert log_has("Starting Local Rest Server.", caplog.record_tuples)
assert log_has("SECURITY WARNING - Local Rest Server listening to external connections",
caplog.record_tuples)
assert log_has("SECURITY WARNING - This is insecure please set to your loopback,"
"e.g 127.0.0.1 in config.json",
caplog.record_tuples)
assert log_has("SECURITY WARNING - No password for local REST Server defined. "
"Please make sure that this is intentional!",
caplog.record_tuples)
# Test crashing flask
caplog.clear()
mocker.patch('freqtrade.rpc.api_server.make_server', MagicMock(side_effect=Exception))
apiserver.run()
assert log_has("Api server failed to start.", caplog.record_tuples)
def test_api_cleanup(default_conf, mocker, caplog):
default_conf.update({"api_server": {"enabled": True,
"listen_ip_address": "127.0.0.1",
"listen_port": "8080"}})
mocker.patch('freqtrade.rpc.telegram.Updater', MagicMock())
mocker.patch('freqtrade.rpc.api_server.threading.Thread', MagicMock())
mocker.patch('freqtrade.rpc.api_server.make_server', MagicMock())
apiserver = ApiServer(get_patched_freqtradebot(mocker, default_conf))
apiserver.run()
stop_mock = MagicMock()
stop_mock.shutdown = MagicMock()
apiserver.srv = stop_mock
apiserver.cleanup()
assert stop_mock.shutdown.call_count == 1
assert log_has("Stopping API Server", caplog.record_tuples)
def test_api_reloadconf(botclient):
ftbot, client = botclient
rc = client_post(client, f"{BASE_URI}/reload_conf")
assert_response(rc)
assert rc.json == {'status': 'reloading config ...'}
assert ftbot.state == State.RELOAD_CONF
def test_api_stopbuy(botclient):
ftbot, client = botclient
assert ftbot.config['max_open_trades'] != 0
rc = client_post(client, f"{BASE_URI}/stopbuy")
assert_response(rc)
assert rc.json == {'status': 'No more buy will occur from now. Run /reload_conf to reset.'}
assert ftbot.config['max_open_trades'] == 0
def test_api_balance(botclient, mocker, rpc_balance):
ftbot, client = botclient
def mock_ticker(symbol, refresh):
if symbol == 'BTC/USDT':
return {
'bid': 10000.00,
'ask': 10000.00,
'last': 10000.00,
}
elif symbol == 'XRP/BTC':
return {
'bid': 0.00001,
'ask': 0.00001,
'last': 0.00001,
}
return {
'bid': 0.1,
'ask': 0.1,
'last': 0.1,
}
mocker.patch('freqtrade.exchange.Exchange.get_balances', return_value=rpc_balance)
mocker.patch('freqtrade.exchange.Exchange.get_ticker', side_effect=mock_ticker)
rc = client_get(client, f"{BASE_URI}/balance")
assert_response(rc)
assert "currencies" in rc.json
assert len(rc.json["currencies"]) == 5
assert rc.json['currencies'][0] == {
'currency': 'BTC',
'available': 12.0,
'balance': 12.0,
'pending': 0.0,
'est_btc': 12.0,
}
def test_api_count(botclient, mocker, ticker, fee, markets):
ftbot, client = botclient
patch_get_signal(ftbot, (True, False))
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
get_balances=MagicMock(return_value=ticker),
get_ticker=ticker,
get_fee=fee,
markets=PropertyMock(return_value=markets)
)
rc = client_get(client, f"{BASE_URI}/count")
assert_response(rc)
assert rc.json["current"] == 0
assert rc.json["max"] == 1.0
# Create some test data
ftbot.create_trade()
rc = client_get(client, f"{BASE_URI}/count")
assert_response(rc)
assert rc.json["current"] == 1.0
assert rc.json["max"] == 1.0
def test_api_daily(botclient, mocker, ticker, fee, markets):
ftbot, client = botclient
patch_get_signal(ftbot, (True, False))
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
get_balances=MagicMock(return_value=ticker),
get_ticker=ticker,
get_fee=fee,
markets=PropertyMock(return_value=markets)
)
rc = client_get(client, f"{BASE_URI}/daily")
assert_response(rc)
assert len(rc.json) == 7
assert rc.json[0][0] == str(datetime.utcnow().date())
def test_api_edge_disabled(botclient, mocker, ticker, fee, markets):
ftbot, client = botclient
patch_get_signal(ftbot, (True, False))
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
get_balances=MagicMock(return_value=ticker),
get_ticker=ticker,
get_fee=fee,
markets=PropertyMock(return_value=markets)
)
rc = client_get(client, f"{BASE_URI}/edge")
assert_response(rc, 502)
assert rc.json == {"error": "Error querying _edge: Edge is not enabled."}
def test_api_profit(botclient, mocker, ticker, fee, markets, limit_buy_order, limit_sell_order):
ftbot, client = botclient
patch_get_signal(ftbot, (True, False))
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
get_balances=MagicMock(return_value=ticker),
get_ticker=ticker,
get_fee=fee,
markets=PropertyMock(return_value=markets)
)
rc = client_get(client, f"{BASE_URI}/profit")
assert_response(rc, 502)
assert len(rc.json) == 1
assert rc.json == {"error": "Error querying _profit: no closed trade"}
ftbot.create_trade()
trade = Trade.query.first()
# Simulate fulfilled LIMIT_BUY order for trade
trade.update(limit_buy_order)
rc = client_get(client, f"{BASE_URI}/profit")
assert_response(rc, 502)
assert rc.json == {"error": "Error querying _profit: no closed trade"}
trade.update(limit_sell_order)
trade.close_date = datetime.utcnow()
trade.is_open = False
rc = client_get(client, f"{BASE_URI}/profit")
assert_response(rc)
assert rc.json == {'avg_duration': '0:00:00',
'best_pair': 'ETH/BTC',
'best_rate': 6.2,
'first_trade_date': 'just now',
'latest_trade_date': 'just now',
'profit_all_coin': 6.217e-05,
'profit_all_fiat': 0,
'profit_all_percent': 6.2,
'profit_closed_coin': 6.217e-05,
'profit_closed_fiat': 0,
'profit_closed_percent': 6.2,
'trade_count': 1
}
def test_api_performance(botclient, mocker, ticker, fee):
ftbot, client = botclient
patch_get_signal(ftbot, (True, False))
trade = Trade(
pair='LTC/ETH',
amount=1,
exchange='binance',
stake_amount=1,
open_rate=0.245441,
open_order_id="123456",
is_open=False,
fee_close=fee.return_value,
fee_open=fee.return_value,
close_rate=0.265441,
)
trade.close_profit = trade.calc_profit_percent()
Trade.session.add(trade)
trade = Trade(
pair='XRP/ETH',
amount=5,
stake_amount=1,
exchange='binance',
open_rate=0.412,
open_order_id="123456",
is_open=False,
fee_close=fee.return_value,
fee_open=fee.return_value,
close_rate=0.391
)
trade.close_profit = trade.calc_profit_percent()
Trade.session.add(trade)
Trade.session.flush()
rc = client_get(client, f"{BASE_URI}/performance")
assert_response(rc)
assert len(rc.json) == 2
assert rc.json == [{'count': 1, 'pair': 'LTC/ETH', 'profit': 7.61},
{'count': 1, 'pair': 'XRP/ETH', 'profit': -5.57}]
def test_api_status(botclient, mocker, ticker, fee, markets):
ftbot, client = botclient
patch_get_signal(ftbot, (True, False))
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
get_balances=MagicMock(return_value=ticker),
get_ticker=ticker,
get_fee=fee,
markets=PropertyMock(return_value=markets)
)
rc = client_get(client, f"{BASE_URI}/status")
assert_response(rc, 502)
assert rc.json == {'error': 'Error querying _status: no active trade'}
ftbot.create_trade()
rc = client_get(client, f"{BASE_URI}/status")
assert_response(rc)
assert len(rc.json) == 1
assert rc.json == [{'amount': 90.99181074,
'base_currency': 'BTC',
'close_date': None,
'close_date_hum': None,
'close_profit': None,
'close_rate': None,
'current_profit': -0.59,
'current_rate': 1.098e-05,
'initial_stop_loss': 0.0,
'initial_stop_loss_pct': None,
'open_date': ANY,
'open_date_hum': 'just now',
'open_order': '(limit buy rem=0.00000000)',
'open_rate': 1.099e-05,
'pair': 'ETH/BTC',
'stake_amount': 0.001,
'stop_loss': 0.0,
'stop_loss_pct': None,
'trade_id': 1}]
def test_api_version(botclient):
ftbot, client = botclient
rc = client_get(client, f"{BASE_URI}/version")
assert_response(rc)
assert rc.json == {"version": __version__}
def test_api_blacklist(botclient, mocker):
ftbot, client = botclient
rc = client_get(client, f"{BASE_URI}/blacklist")
assert_response(rc)
assert rc.json == {"blacklist": ["DOGE/BTC", "HOT/BTC"],
"length": 2,
"method": "StaticPairList"}
# Add ETH/BTC to blacklist
rc = client_post(client, f"{BASE_URI}/blacklist",
data='{"blacklist": ["ETH/BTC"]}')
assert_response(rc)
assert rc.json == {"blacklist": ["DOGE/BTC", "HOT/BTC", "ETH/BTC"],
"length": 3,
"method": "StaticPairList"}
def test_api_whitelist(botclient):
ftbot, client = botclient
rc = client_get(client, f"{BASE_URI}/whitelist")
assert_response(rc)
assert rc.json == {"whitelist": ['ETH/BTC', 'LTC/BTC', 'XRP/BTC', 'NEO/BTC'],
"length": 4,
"method": "StaticPairList"}
def test_api_forcebuy(botclient, mocker, fee):
ftbot, client = botclient
rc = client_post(client, f"{BASE_URI}/forcebuy",
data='{"pair": "ETH/BTC"}')
assert_response(rc, 502)
assert rc.json == {"error": "Error querying _forcebuy: Forcebuy not enabled."}
# enable forcebuy
ftbot.config["forcebuy_enable"] = True
fbuy_mock = MagicMock(return_value=None)
mocker.patch("freqtrade.rpc.RPC._rpc_forcebuy", fbuy_mock)
rc = client_post(client, f"{BASE_URI}/forcebuy",
data='{"pair": "ETH/BTC"}')
assert_response(rc)
assert rc.json == {"status": "Error buying pair ETH/BTC."}
# Test creating trae
fbuy_mock = MagicMock(return_value=Trade(
pair='ETH/ETH',
amount=1,
exchange='bittrex',
stake_amount=1,
open_rate=0.245441,
open_order_id="123456",
open_date=datetime.utcnow(),
is_open=False,
fee_close=fee.return_value,
fee_open=fee.return_value,
close_rate=0.265441,
))
mocker.patch("freqtrade.rpc.RPC._rpc_forcebuy", fbuy_mock)
rc = client_post(client, f"{BASE_URI}/forcebuy",
data='{"pair": "ETH/BTC"}')
assert_response(rc)
assert rc.json == {'amount': 1,
'close_date': None,
'close_date_hum': None,
'close_rate': 0.265441,
'initial_stop_loss': None,
'initial_stop_loss_pct': None,
'open_date': ANY,
'open_date_hum': 'just now',
'open_rate': 0.245441,
'pair': 'ETH/ETH',
'stake_amount': 1,
'stop_loss': None,
'stop_loss_pct': None,
'trade_id': None}
def test_api_forcesell(botclient, mocker, ticker, fee, markets):
ftbot, client = botclient
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
get_balances=MagicMock(return_value=ticker),
get_ticker=ticker,
get_fee=fee,
markets=PropertyMock(return_value=markets)
)
patch_get_signal(ftbot, (True, False))
rc = client_post(client, f"{BASE_URI}/forcesell",
data='{"tradeid": "1"}')
assert_response(rc, 502)
assert rc.json == {"error": "Error querying _forcesell: invalid argument"}
ftbot.create_trade()
rc = client_post(client, f"{BASE_URI}/forcesell",
data='{"tradeid": "1"}')
assert_response(rc)
assert rc.json == {'result': 'Created sell order for trade 1.'}

View File

@ -135,3 +135,32 @@ def test_startupmessages_telegram_enabled(mocker, default_conf, caplog) -> None:
rpc_manager.startup_messages(default_conf, freqtradebot.pairlists)
assert telegram_mock.call_count == 3
assert "Dry run is enabled." in telegram_mock.call_args_list[0][0][0]['status']
def test_init_apiserver_disabled(mocker, default_conf, caplog) -> None:
caplog.set_level(logging.DEBUG)
run_mock = MagicMock()
mocker.patch('freqtrade.rpc.api_server.ApiServer.run', run_mock)
default_conf['telegram']['enabled'] = False
rpc_manager = RPCManager(get_patched_freqtradebot(mocker, default_conf))
assert not log_has('Enabling rpc.api_server', caplog.record_tuples)
assert rpc_manager.registered_modules == []
assert run_mock.call_count == 0
def test_init_apiserver_enabled(mocker, default_conf, caplog) -> None:
caplog.set_level(logging.DEBUG)
run_mock = MagicMock()
mocker.patch('freqtrade.rpc.api_server.ApiServer.run', run_mock)
default_conf["telegram"]["enabled"] = False
default_conf["api_server"] = {"enabled": True,
"listen_ip_address": "127.0.0.1",
"listen_port": "8080"}
rpc_manager = RPCManager(get_patched_freqtradebot(mocker, default_conf))
assert log_has('Enabling rpc.api_server', caplog.record_tuples)
assert len(rpc_manager.registered_modules) == 1
assert 'apiserver' in [mod.name for mod in rpc_manager.registered_modules]
assert run_mock.call_count == 1

View File

@ -22,8 +22,7 @@ from freqtrade.rpc.telegram import Telegram, authorized_only
from freqtrade.state import State
from freqtrade.strategy.interface import SellType
from freqtrade.tests.conftest import (get_patched_freqtradebot, log_has,
patch_exchange)
from freqtrade.tests.test_freqtradebot import patch_get_signal
patch_exchange, patch_get_signal)
class DummyCls(Telegram):
@ -192,7 +191,10 @@ def test_status(default_conf, update, mocker, fee, ticker, markets) -> None:
'trade_id': 1,
'pair': 'ETH/BTC',
'base_currency': 'BTC',
'date': arrow.utcnow(),
'open_date': arrow.utcnow(),
'open_date_hum': arrow.utcnow().humanize,
'close_date': None,
'close_date_hum': None,
'open_rate': 1.099e-05,
'close_rate': None,
'current_rate': 1.098e-05,
@ -493,34 +495,7 @@ def test_profit_handle(default_conf, update, ticker, ticker_sell_up, fee,
assert '*Best Performing:* `ETH/BTC: 6.20%`' in msg_mock.call_args_list[-1][0][0]
def test_telegram_balance_handle(default_conf, update, mocker) -> None:
mock_balance = {
'BTC': {
'total': 12.0,
'free': 12.0,
'used': 0.0
},
'ETH': {
'total': 0.0,
'free': 0.0,
'used': 0.0
},
'USDT': {
'total': 10000.0,
'free': 10000.0,
'used': 0.0
},
'LTC': {
'total': 10.0,
'free': 10.0,
'used': 0.0
},
'XRP': {
'total': 1.0,
'free': 1.0,
'used': 0.0
}
}
def test_telegram_balance_handle(default_conf, update, mocker, rpc_balance) -> None:
def mock_ticker(symbol, refresh):
if symbol == 'BTC/USDT':
@ -541,7 +516,7 @@ def test_telegram_balance_handle(default_conf, update, mocker) -> None:
'last': 0.1,
}
mocker.patch('freqtrade.exchange.Exchange.get_balances', return_value=mock_balance)
mocker.patch('freqtrade.exchange.Exchange.get_balances', return_value=rpc_balance)
mocker.patch('freqtrade.exchange.Exchange.get_ticker', side_effect=mock_ticker)
msg_mock = MagicMock()
@ -562,6 +537,7 @@ def test_telegram_balance_handle(default_conf, update, mocker) -> None:
assert '*BTC:*' in result
assert '*ETH:*' not in result
assert '*USDT:*' in result
assert '*EUR:*' in result
assert 'Balance:' in result
assert 'Est. BTC:' in result
assert 'BTC: 12.00000000' in result
@ -780,6 +756,7 @@ def test_forcesell_handle(default_conf, update, ticker, fee,
'gain': 'profit',
'limit': 1.172e-05,
'amount': 90.99181073703367,
'order_type': 'limit',
'open_rate': 1.099e-05,
'current_rate': 1.172e-05,
'profit_amount': 6.126e-05,
@ -834,6 +811,7 @@ def test_forcesell_down_handle(default_conf, update, ticker, fee,
'gain': 'loss',
'limit': 1.044e-05,
'amount': 90.99181073703367,
'order_type': 'limit',
'open_rate': 1.099e-05,
'current_rate': 1.044e-05,
'profit_amount': -5.492e-05,
@ -879,6 +857,7 @@ def test_forcesell_all_handle(default_conf, update, ticker, fee, markets, mocker
'gain': 'loss',
'limit': 1.098e-05,
'amount': 90.99181073703367,
'order_type': 'limit',
'open_rate': 1.099e-05,
'current_rate': 1.098e-05,
'profit_amount': -5.91e-06,
@ -1212,6 +1191,7 @@ def test_send_msg_buy_notification(default_conf, mocker) -> None:
'exchange': 'Bittrex',
'pair': 'ETH/BTC',
'limit': 1.099e-05,
'order_type': 'limit',
'stake_amount': 0.001,
'stake_amount_fiat': 0.0,
'stake_currency': 'BTC',
@ -1219,7 +1199,7 @@ def test_send_msg_buy_notification(default_conf, mocker) -> None:
})
assert msg_mock.call_args[0][0] \
== '*Bittrex:* Buying ETH/BTC\n' \
'with limit `0.00001099\n' \
'at rate `0.00001099\n' \
'(0.001000 BTC,0.000 USD)`'
@ -1241,6 +1221,7 @@ def test_send_msg_sell_notification(default_conf, mocker) -> None:
'gain': 'loss',
'limit': 3.201e-05,
'amount': 1333.3333333333335,
'order_type': 'market',
'open_rate': 7.5e-05,
'current_rate': 3.201e-05,
'profit_amount': -0.05746268,
@ -1251,7 +1232,7 @@ def test_send_msg_sell_notification(default_conf, mocker) -> None:
})
assert msg_mock.call_args[0][0] \
== ('*Binance:* Selling KEY/ETH\n'
'*Limit:* `0.00003201`\n'
'*Rate:* `0.00003201`\n'
'*Amount:* `1333.33333333`\n'
'*Open Rate:* `0.00007500`\n'
'*Current Rate:* `0.00003201`\n'
@ -1266,6 +1247,7 @@ def test_send_msg_sell_notification(default_conf, mocker) -> None:
'gain': 'loss',
'limit': 3.201e-05,
'amount': 1333.3333333333335,
'order_type': 'market',
'open_rate': 7.5e-05,
'current_rate': 3.201e-05,
'profit_amount': -0.05746268,
@ -1275,7 +1257,7 @@ def test_send_msg_sell_notification(default_conf, mocker) -> None:
})
assert msg_mock.call_args[0][0] \
== ('*Binance:* Selling KEY/ETH\n'
'*Limit:* `0.00003201`\n'
'*Rate:* `0.00003201`\n'
'*Amount:* `1333.33333333`\n'
'*Open Rate:* `0.00007500`\n'
'*Current Rate:* `0.00003201`\n'
@ -1363,6 +1345,7 @@ def test_send_msg_buy_notification_no_fiat(default_conf, mocker) -> None:
'exchange': 'Bittrex',
'pair': 'ETH/BTC',
'limit': 1.099e-05,
'order_type': 'limit',
'stake_amount': 0.001,
'stake_amount_fiat': 0.0,
'stake_currency': 'BTC',
@ -1370,7 +1353,7 @@ def test_send_msg_buy_notification_no_fiat(default_conf, mocker) -> None:
})
assert msg_mock.call_args[0][0] \
== '*Bittrex:* Buying ETH/BTC\n' \
'with limit `0.00001099\n' \
'at rate `0.00001099\n' \
'(0.001000 BTC)`'
@ -1391,6 +1374,7 @@ def test_send_msg_sell_notification_no_fiat(default_conf, mocker) -> None:
'gain': 'loss',
'limit': 3.201e-05,
'amount': 1333.3333333333335,
'order_type': 'limit',
'open_rate': 7.5e-05,
'current_rate': 3.201e-05,
'profit_amount': -0.05746268,
@ -1401,7 +1385,7 @@ def test_send_msg_sell_notification_no_fiat(default_conf, mocker) -> None:
})
assert msg_mock.call_args[0][0] \
== '*Binance:* Selling KEY/ETH\n' \
'*Limit:* `0.00003201`\n' \
'*Rate:* `0.00003201`\n' \
'*Amount:* `1333.33333333`\n' \
'*Open Rate:* `0.00007500`\n' \
'*Current Rate:* `0.00003201`\n' \

View File

@ -74,6 +74,7 @@ def test_send_msg(default_conf, mocker):
'gain': "profit",
'limit': 0.005,
'amount': 0.8,
'order_type': 'limit',
'open_rate': 0.004,
'current_rate': 0.005,
'profit_amount': 0.001,
@ -126,6 +127,7 @@ def test_exception_send_msg(default_conf, mocker, caplog):
'exchange': 'Bittrex',
'pair': 'ETH/BTC',
'limit': 0.005,
'order_type': 'limit',
'stake_amount': 0.8,
'stake_amount_fiat': 500,
'stake_currency': 'BTC',

View File

@ -10,7 +10,8 @@ from freqtrade.strategy.default_strategy import DefaultStrategy
@pytest.fixture
def result():
with open('freqtrade/tests/testdata/ETH_BTC-1m.json') as data_file:
return parse_ticker_dataframe(json.load(data_file), '1m', fill_missing=True)
return parse_ticker_dataframe(json.load(data_file), '1m', pair="UNITTEST/BTC",
fill_missing=True)
def test_default_strategy_structure():

View File

@ -111,7 +111,8 @@ def test_tickerdata_to_dataframe(default_conf) -> None:
timerange = TimeRange(None, 'line', 0, -100)
tick = load_tickerdata_file(None, 'UNITTEST/BTC', '1m', timerange=timerange)
tickerlist = {'UNITTEST/BTC': parse_ticker_dataframe(tick, '1m', True)}
tickerlist = {'UNITTEST/BTC': parse_ticker_dataframe(tick, '1m', pair="UNITTEST/BTC",
fill_missing=True)}
data = strategy.tickerdata_to_dataframe(tickerlist)
assert len(data['UNITTEST/BTC']) == 102 # partial candle was removed

View File

@ -63,27 +63,22 @@ def test_search_strategy():
def test_load_strategy(result):
resolver = StrategyResolver({'strategy': 'TestStrategy'})
metadata = {'pair': 'ETH/BTC'}
assert 'adx' in resolver.strategy.advise_indicators(result, metadata=metadata)
assert 'adx' in resolver.strategy.advise_indicators(result, {'pair': 'ETH/BTC'})
def test_load_strategy_byte64(result):
with open("freqtrade/tests/strategy/test_strategy.py", "r") as file:
encoded_string = urlsafe_b64encode(file.read().encode("utf-8")).decode("utf-8")
resolver = StrategyResolver({'strategy': 'TestStrategy:{}'.format(encoded_string)})
assert 'adx' in resolver.strategy.advise_indicators(result, 'ETH/BTC')
assert 'adx' in resolver.strategy.advise_indicators(result, {'pair': 'ETH/BTC'})
def test_load_strategy_invalid_directory(result, caplog):
resolver = StrategyResolver()
extra_dir = path.join('some', 'path')
extra_dir = Path.cwd() / 'some/path'
resolver._load_strategy('TestStrategy', config={}, extra_dir=extra_dir)
assert (
'freqtrade.resolvers.strategy_resolver',
logging.WARNING,
'Path "{}" does not exist'.format(extra_dir),
) in caplog.record_tuples
assert log_has_re(r'Path .*' + r'some.*path.*' + r'.* does not exist', caplog.record_tuples)
assert 'adx' in resolver.strategy.advise_indicators(result, {'pair': 'ETH/BTC'})
@ -371,7 +366,7 @@ def test_deprecate_populate_indicators(result):
with warnings.catch_warnings(record=True) as w:
# Cause all warnings to always be triggered.
warnings.simplefilter("always")
indicators = resolver.strategy.advise_indicators(result, 'ETH/BTC')
indicators = resolver.strategy.advise_indicators(result, {'pair': 'ETH/BTC'})
assert len(w) == 1
assert issubclass(w[-1].category, DeprecationWarning)
assert "deprecated - check out the Sample strategy to see the current function headers!" \
@ -380,7 +375,7 @@ def test_deprecate_populate_indicators(result):
with warnings.catch_warnings(record=True) as w:
# Cause all warnings to always be triggered.
warnings.simplefilter("always")
resolver.strategy.advise_buy(indicators, 'ETH/BTC')
resolver.strategy.advise_buy(indicators, {'pair': 'ETH/BTC'})
assert len(w) == 1
assert issubclass(w[-1].category, DeprecationWarning)
assert "deprecated - check out the Sample strategy to see the current function headers!" \
@ -389,7 +384,7 @@ def test_deprecate_populate_indicators(result):
with warnings.catch_warnings(record=True) as w:
# Cause all warnings to always be triggered.
warnings.simplefilter("always")
resolver.strategy.advise_sell(indicators, 'ETH_BTC')
resolver.strategy.advise_sell(indicators, {'pair': 'ETH_BTC'})
assert len(w) == 1
assert issubclass(w[-1].category, DeprecationWarning)
assert "deprecated - check out the Sample strategy to see the current function headers!" \

View File

@ -1,5 +1,4 @@
# pragma pylint: disable=missing-docstring, C0103
import argparse
import pytest
@ -48,9 +47,9 @@ def test_parse_args_verbose() -> None:
assert args.loglevel == 1
def test_scripts_options() -> None:
def test_common_scripts_options() -> None:
arguments = Arguments(['-p', 'ETH/BTC'], '')
arguments.scripts_options()
arguments.common_scripts_options()
args = arguments.get_parsed_arg()
assert args.pairs == 'ETH/BTC'
@ -171,17 +170,54 @@ def test_parse_args_hyperopt_custom() -> None:
assert call_args.func is not None
def test_testdata_dl_options() -> None:
def test_download_data_options() -> None:
args = [
'--pairs-file', 'file_with_pairs',
'--export', 'export/folder',
'--datadir', 'datadir/folder',
'--days', '30',
'--exchange', 'binance'
]
arguments = Arguments(args, '')
arguments.testdata_dl_options()
arguments.common_options()
arguments.download_data_options()
args = arguments.parse_args()
assert args.pairs_file == 'file_with_pairs'
assert args.export == 'export/folder'
assert args.datadir == 'datadir/folder'
assert args.days == 30
assert args.exchange == 'binance'
def test_plot_dataframe_options() -> None:
args = [
'--indicators1', 'sma10,sma100',
'--indicators2', 'macd,fastd,fastk',
'--plot-limit', '30',
'-p', 'UNITTEST/BTC',
]
arguments = Arguments(args, '')
arguments.common_scripts_options()
arguments.plot_dataframe_options()
pargs = arguments.parse_args(True)
assert pargs.indicators1 == "sma10,sma100"
assert pargs.indicators2 == "macd,fastd,fastk"
assert pargs.plot_limit == 30
assert pargs.pairs == "UNITTEST/BTC"
def test_check_int_positive() -> None:
assert Arguments.check_int_positive("3") == 3
assert Arguments.check_int_positive("1") == 1
assert Arguments.check_int_positive("100") == 100
with pytest.raises(argparse.ArgumentTypeError):
Arguments.check_int_positive("-2")
with pytest.raises(argparse.ArgumentTypeError):
Arguments.check_int_positive("0")
with pytest.raises(argparse.ArgumentTypeError):
Arguments.check_int_positive("3.5")
with pytest.raises(argparse.ArgumentTypeError):
Arguments.check_int_positive("DeadBeef")

View File

@ -15,7 +15,16 @@ from freqtrade.arguments import Arguments
from freqtrade.configuration import Configuration, set_loggers
from freqtrade.constants import DEFAULT_DB_DRYRUN_URL, DEFAULT_DB_PROD_URL
from freqtrade.state import RunMode
from freqtrade.tests.conftest import log_has
from freqtrade.tests.conftest import log_has, log_has_re
@pytest.fixture(scope="function")
def all_conf():
config_file = Path(__file__).parents[2] / "config_full.json.example"
print(config_file)
configuration = Configuration(Namespace())
conf = configuration._load_config_file(str(config_file))
return conf
def test_load_config_invalid_pair(default_conf) -> None:
@ -351,11 +360,8 @@ def test_setup_configuration_with_arguments(mocker, default_conf, caplog) -> Non
caplog.record_tuples
)
assert 'ticker_interval' in config
assert log_has('Parameter -i/--ticker-interval detected ...', caplog.record_tuples)
assert log_has(
'Using ticker_interval: 1m ...',
caplog.record_tuples
)
assert log_has('Parameter -i/--ticker-interval detected ... Using ticker_interval: 1m ...',
caplog.record_tuples)
assert 'live' in config
assert log_has('Parameter -l/--live detected ...', caplog.record_tuples)
@ -416,11 +422,8 @@ def test_setup_configuration_with_stratlist(mocker, default_conf, caplog) -> Non
caplog.record_tuples
)
assert 'ticker_interval' in config
assert log_has('Parameter -i/--ticker-interval detected ...', caplog.record_tuples)
assert log_has(
'Using ticker_interval: 1m ...',
caplog.record_tuples
)
assert log_has('Parameter -i/--ticker-interval detected ... Using ticker_interval: 1m ...',
caplog.record_tuples)
assert 'strategy_list' in config
assert log_has('Using strategy list of 2 Strategies', caplog.record_tuples)
@ -454,8 +457,8 @@ def test_hyperopt_with_arguments(mocker, default_conf, caplog) -> None:
assert 'epochs' in config
assert int(config['epochs']) == 10
assert log_has('Parameter --epochs detected ...', caplog.record_tuples)
assert log_has('Will run Hyperopt with for 10 epochs ...', caplog.record_tuples)
assert log_has('Parameter --epochs detected ... Will run Hyperopt with for 10 epochs ...',
caplog.record_tuples)
assert 'spaces' in config
assert config['spaces'] == ['all']
@ -467,21 +470,52 @@ def test_hyperopt_with_arguments(mocker, default_conf, caplog) -> None:
def test_check_exchange(default_conf, caplog) -> None:
configuration = Configuration(Namespace())
# Test a valid exchange
# Test an officially supported by Freqtrade team exchange
default_conf.get('exchange').update({'name': 'BITTREX'})
assert configuration.check_exchange(default_conf)
assert log_has_re(r"Exchange .* is officially supported by the Freqtrade development team\.",
caplog.record_tuples)
caplog.clear()
# Test a valid exchange
# Test an officially supported by Freqtrade team exchange
default_conf.get('exchange').update({'name': 'binance'})
assert configuration.check_exchange(default_conf)
assert log_has_re(r"Exchange .* is officially supported by the Freqtrade development team\.",
caplog.record_tuples)
caplog.clear()
# Test a invalid exchange
# Test an available exchange, supported by ccxt
default_conf.get('exchange').update({'name': 'kraken'})
assert configuration.check_exchange(default_conf)
assert log_has_re(r"Exchange .* is supported by ccxt and .* not officially supported "
r"by the Freqtrade development team\. .*",
caplog.record_tuples)
caplog.clear()
# Test a 'bad' exchange, which known to have serious problems
default_conf.get('exchange').update({'name': 'bitmex'})
assert not configuration.check_exchange(default_conf)
assert log_has_re(r"Exchange .* is known to not work with the bot yet\. "
r"Use it only for development and testing purposes\.",
caplog.record_tuples)
caplog.clear()
# Test a 'bad' exchange with check_for_bad=False
default_conf.get('exchange').update({'name': 'bitmex'})
assert configuration.check_exchange(default_conf, False)
assert log_has_re(r"Exchange .* is supported by ccxt and .* not officially supported "
r"by the Freqtrade development team\. .*",
caplog.record_tuples)
caplog.clear()
# Test an invalid exchange
default_conf.get('exchange').update({'name': 'unknown_exchange'})
configuration.config = default_conf
with pytest.raises(
OperationalException,
match=r'.*Exchange "unknown_exchange" not supported.*'
match=r'.*Exchange "unknown_exchange" is not supported by ccxt '
r'and therefore not available for the bot.*'
):
configuration.check_exchange(default_conf)
@ -608,3 +642,59 @@ def test_validate_tsl(default_conf):
default_conf['trailing_stop_positive_offset'] = 0.015
Configuration(Namespace())
configuration._validate_config_consistency(default_conf)
def test_load_config_default_exchange(all_conf) -> None:
"""
config['exchange'] subtree has required options in it
so it cannot be omitted in the config
"""
del all_conf['exchange']
assert 'exchange' not in all_conf
with pytest.raises(ValidationError,
match=r'\'exchange\' is a required property'):
configuration = Configuration(Namespace())
configuration._validate_config_schema(all_conf)
def test_load_config_default_exchange_name(all_conf) -> None:
"""
config['exchange']['name'] option is required
so it cannot be omitted in the config
"""
del all_conf['exchange']['name']
assert 'name' not in all_conf['exchange']
with pytest.raises(ValidationError,
match=r'\'name\' is a required property'):
configuration = Configuration(Namespace())
configuration._validate_config_schema(all_conf)
@pytest.mark.parametrize("keys", [("exchange", "sandbox", False),
("exchange", "key", ""),
("exchange", "secret", ""),
("exchange", "password", ""),
])
def test_load_config_default_subkeys(all_conf, keys) -> None:
"""
Test for parameters with default values in sub-paths
so they can be omitted in the config and the default value
should is added to the config.
"""
# Get first level key
key = keys[0]
# get second level key
subkey = keys[1]
del all_conf[key][subkey]
assert subkey not in all_conf[key]
configuration = Configuration(Namespace())
configuration._validate_config_schema(all_conf)
assert subkey in all_conf[key]
assert all_conf[key][subkey] == keys[2]

View File

@ -11,64 +11,21 @@ import arrow
import pytest
import requests
from freqtrade import (DependencyException, OperationalException,
TemporaryError, InvalidOrderException, constants)
from freqtrade import (DependencyException, InvalidOrderException,
OperationalException, TemporaryError, constants)
from freqtrade.data.dataprovider import DataProvider
from freqtrade.freqtradebot import FreqtradeBot
from freqtrade.persistence import Trade
from freqtrade.rpc import RPCMessageType
from freqtrade.state import State
from freqtrade.strategy.interface import SellCheckTuple, SellType
from freqtrade.tests.conftest import (log_has, log_has_re, patch_edge,
patch_exchange, patch_wallet)
from freqtrade.tests.conftest import (get_patched_freqtradebot,
get_patched_worker, log_has, log_has_re,
patch_edge, patch_exchange,
patch_get_signal, patch_wallet)
from freqtrade.worker import Worker
# Functions for recurrent object patching
def patch_freqtradebot(mocker, config) -> None:
"""
This function patches _init_modules() to not call dependencies
:param mocker: a Mocker object to apply patches
:param config: Config to pass to the bot
:return: None
"""
mocker.patch('freqtrade.freqtradebot.RPCManager', MagicMock())
mocker.patch('freqtrade.freqtradebot.persistence.init', MagicMock())
patch_exchange(mocker)
def get_patched_freqtradebot(mocker, config) -> FreqtradeBot:
"""
This function patches _init_modules() to not call dependencies
:param mocker: a Mocker object to apply patches
:param config: Config to pass to the bot
:return: FreqtradeBot
"""
patch_freqtradebot(mocker, config)
return FreqtradeBot(config)
def get_patched_worker(mocker, config) -> Worker:
"""
This function patches _init_modules() to not call dependencies
:param mocker: a Mocker object to apply patches
:param config: Config to pass to the bot
:return: Worker
"""
patch_freqtradebot(mocker, config)
return Worker(args=None, config=config)
def patch_get_signal(freqtrade: FreqtradeBot, value=(True, False)) -> None:
"""
:param mocker: mocker to patch IStrategy class
:param value: which value IStrategy.get_signal() must return
:return: None
"""
freqtrade.strategy.get_signal = lambda e, s, t: value
freqtrade.exchange.refresh_latest_ohlcv = lambda p: None
def patch_RPCManager(mocker) -> MagicMock:
"""
This function mock RPC manager to avoid repeating this code in almost every tests
@ -114,6 +71,7 @@ def test_cleanup(mocker, default_conf, caplog) -> None:
def test_worker_running(mocker, default_conf, caplog) -> None:
mock_throttle = MagicMock()
mocker.patch('freqtrade.worker.Worker._throttle', mock_throttle)
mocker.patch('freqtrade.persistence.Trade.stoploss_reinitialization', MagicMock())
worker = get_patched_worker(mocker, default_conf)
@ -1184,6 +1142,77 @@ def test_handle_stoploss_on_exchange_trailing(mocker, default_conf, fee, caplog,
stop_price=0.00002344 * 0.95)
def test_handle_stoploss_on_exchange_trailing_error(mocker, default_conf, fee, caplog,
markets, limit_buy_order,
limit_sell_order) -> None:
# When trailing stoploss is set
stoploss_limit = MagicMock(return_value={'id': 13434334})
patch_exchange(mocker)
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
get_ticker=MagicMock(return_value={
'bid': 0.00001172,
'ask': 0.00001173,
'last': 0.00001172
}),
buy=MagicMock(return_value={'id': limit_buy_order['id']}),
sell=MagicMock(return_value={'id': limit_sell_order['id']}),
get_fee=fee,
markets=PropertyMock(return_value=markets),
stoploss_limit=stoploss_limit
)
# enabling TSL
default_conf['trailing_stop'] = True
freqtrade = get_patched_freqtradebot(mocker, default_conf)
# enabling stoploss on exchange
freqtrade.strategy.order_types['stoploss_on_exchange'] = True
# setting stoploss
freqtrade.strategy.stoploss = -0.05
# setting stoploss_on_exchange_interval to 60 seconds
freqtrade.strategy.order_types['stoploss_on_exchange_interval'] = 60
patch_get_signal(freqtrade)
freqtrade.create_trade()
trade = Trade.query.first()
trade.is_open = True
trade.open_order_id = None
trade.stoploss_order_id = "abcd"
trade.stop_loss = 0.2
trade.stoploss_last_update = arrow.utcnow().shift(minutes=-601).datetime.replace(tzinfo=None)
stoploss_order_hanging = {
'id': "abcd",
'status': 'open',
'type': 'stop_loss_limit',
'price': 3,
'average': 2,
'info': {
'stopPrice': '0.1'
}
}
mocker.patch('freqtrade.exchange.Exchange.cancel_order', side_effect=InvalidOrderException())
mocker.patch('freqtrade.exchange.Exchange.get_order', stoploss_order_hanging)
freqtrade.handle_trailing_stoploss_on_exchange(trade, stoploss_order_hanging)
assert log_has_re(r"Could not cancel stoploss order abcd for pair ETH/BTC.*",
caplog.record_tuples)
# Still try to create order
assert stoploss_limit.call_count == 1
# Fail creating stoploss order
caplog.clear()
cancel_mock = mocker.patch("freqtrade.exchange.Exchange.cancel_order", MagicMock())
mocker.patch("freqtrade.exchange.Exchange.stoploss_limit", side_effect=DependencyException())
freqtrade.handle_trailing_stoploss_on_exchange(trade, stoploss_order_hanging)
assert cancel_mock.call_count == 1
assert log_has_re(r"Could create trailing stoploss order for pair ETH/BTC\..*",
caplog.record_tuples)
def test_tsl_on_exchange_compatible_with_edge(mocker, edge_conf, fee, caplog,
markets, limit_buy_order, limit_sell_order) -> None:
@ -1407,7 +1436,8 @@ def test_update_trade_state_withorderdict(default_conf, trades_for_order, limit_
amount=amount,
exchange='binance',
open_rate=0.245441,
open_order_id="123456"
open_order_id="123456",
is_open=True,
)
freqtrade.update_trade_state(trade, limit_buy_order)
assert trade.amount != amount
@ -1432,6 +1462,35 @@ def test_update_trade_state_exception(mocker, default_conf,
assert log_has('Could not update trade amount: ', caplog.record_tuples)
def test_update_trade_state_sell(default_conf, trades_for_order, limit_sell_order, mocker):
mocker.patch('freqtrade.exchange.Exchange.get_trades_for_order', return_value=trades_for_order)
# get_order should not be called!!
mocker.patch('freqtrade.exchange.Exchange.get_order', MagicMock(side_effect=ValueError))
wallet_mock = MagicMock()
mocker.patch('freqtrade.wallets.Wallets.update', wallet_mock)
patch_exchange(mocker)
Trade.session = MagicMock()
amount = limit_sell_order["amount"]
freqtrade = get_patched_freqtradebot(mocker, default_conf)
wallet_mock.reset_mock()
trade = Trade(
pair='LTC/ETH',
amount=amount,
exchange='binance',
open_rate=0.245441,
fee_open=0.0025,
fee_close=0.0025,
open_order_id="123456",
is_open=True,
)
freqtrade.update_trade_state(trade, limit_sell_order)
assert trade.amount == limit_sell_order['amount']
# Wallet needs to be updated after closing a limit-sell order to reenable buying
assert wallet_mock.call_count == 1
assert not trade.is_open
def test_handle_trade(default_conf, limit_buy_order, limit_sell_order,
fee, markets, mocker) -> None:
patch_RPCManager(mocker)
@ -1972,6 +2031,7 @@ def test_execute_sell_up(default_conf, ticker, fee, ticker_sell_up, markets, moc
'gain': 'profit',
'limit': 1.172e-05,
'amount': 90.99181073703367,
'order_type': 'limit',
'open_rate': 1.099e-05,
'current_rate': 1.172e-05,
'profit_amount': 6.126e-05,
@ -2018,6 +2078,7 @@ def test_execute_sell_down(default_conf, ticker, fee, ticker_sell_down, markets,
'gain': 'loss',
'limit': 1.044e-05,
'amount': 90.99181073703367,
'order_type': 'limit',
'open_rate': 1.099e-05,
'current_rate': 1.044e-05,
'profit_amount': -5.492e-05,
@ -2072,6 +2133,7 @@ def test_execute_sell_down_stoploss_on_exchange_dry_run(default_conf, ticker, fe
'gain': 'loss',
'limit': 1.08801e-05,
'amount': 90.99181073703367,
'order_type': 'limit',
'open_rate': 1.099e-05,
'current_rate': 1.044e-05,
'profit_amount': -1.498e-05,
@ -2083,6 +2145,36 @@ def test_execute_sell_down_stoploss_on_exchange_dry_run(default_conf, ticker, fe
} == last_msg
def test_execute_sell_sloe_cancel_exception(mocker, default_conf, ticker, fee,
markets, caplog) -> None:
freqtrade = get_patched_freqtradebot(mocker, default_conf)
mocker.patch('freqtrade.exchange.Exchange.cancel_order', side_effect=InvalidOrderException())
sellmock = MagicMock()
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
_load_markets=MagicMock(return_value={}),
get_ticker=ticker,
get_fee=fee,
markets=PropertyMock(return_value=markets),
sell=sellmock
)
freqtrade.strategy.order_types['stoploss_on_exchange'] = True
patch_get_signal(freqtrade)
freqtrade.create_trade()
trade = Trade.query.first()
Trade.session = MagicMock()
freqtrade.config['dry_run'] = False
trade.stoploss_order_id = "abcd"
freqtrade.execute_sell(trade=trade, limit=1234,
sell_reason=SellType.STOP_LOSS)
assert sellmock.call_count == 1
assert log_has('Could not cancel stoploss order abcd', caplog.record_tuples)
def test_execute_sell_with_stoploss_on_exchange(default_conf,
ticker, fee, ticker_sell_up,
markets, mocker) -> None:
@ -2243,6 +2335,7 @@ def test_execute_sell_without_conf_sell_up(default_conf, ticker, fee,
'gain': 'profit',
'limit': 1.172e-05,
'amount': 90.99181073703367,
'order_type': 'limit',
'open_rate': 1.099e-05,
'current_rate': 1.172e-05,
'profit_amount': 6.126e-05,
@ -2290,6 +2383,7 @@ def test_execute_sell_without_conf_sell_down(default_conf, ticker, fee,
'gain': 'loss',
'limit': 1.044e-05,
'amount': 90.99181073703367,
'order_type': 'limit',
'open_rate': 1.099e-05,
'current_rate': 1.044e-05,
'profit_amount': -5.492e-05,
@ -2463,9 +2557,9 @@ def test_trailing_stop_loss(default_conf, limit_buy_order, fee, markets, caplog,
mocker.patch.multiple(
'freqtrade.exchange.Exchange',
get_ticker=MagicMock(return_value={
'bid': 0.00000102,
'ask': 0.00000103,
'last': 0.00000102
'bid': 0.00001099,
'ask': 0.00001099,
'last': 0.00001099
}),
buy=MagicMock(return_value={'id': limit_buy_order['id']}),
get_fee=fee,
@ -2477,15 +2571,33 @@ def test_trailing_stop_loss(default_conf, limit_buy_order, fee, markets, caplog,
freqtrade.strategy.min_roi_reached = MagicMock(return_value=False)
freqtrade.create_trade()
trade = Trade.query.first()
trade.update(limit_buy_order)
trade.max_rate = trade.open_rate * 1.003
assert freqtrade.handle_trade(trade) is False
# Raise ticker above buy price
mocker.patch('freqtrade.exchange.Exchange.get_ticker',
MagicMock(return_value={
'bid': 0.00001099 * 1.5,
'ask': 0.00001099 * 1.5,
'last': 0.00001099 * 1.5
}))
# Stoploss should be adjusted
assert freqtrade.handle_trade(trade) is False
# Price fell
mocker.patch('freqtrade.exchange.Exchange.get_ticker',
MagicMock(return_value={
'bid': 0.00001099 * 1.1,
'ask': 0.00001099 * 1.1,
'last': 0.00001099 * 1.1
}))
caplog.set_level(logging.DEBUG)
# Sell as trailing-stop is reached
assert freqtrade.handle_trade(trade) is True
assert log_has(
f'HIT STOP: current price at 0.000001, stop loss is {trade.stop_loss:.6f}, '
f'HIT STOP: current price at 0.000012, stop loss is 0.000015, '
f'initial stop loss was at 0.000010, trade opened at 0.000011', caplog.record_tuples)
assert trade.sell_reason == SellType.TRAILING_STOP_LOSS.value
@ -3105,10 +3217,27 @@ def test_get_sell_rate(default_conf, mocker, ticker, order_book_l2) -> None:
assert rate == 0.043936
def test_startup_messages(default_conf, mocker):
def test_startup_state(default_conf, mocker):
default_conf['pairlist'] = {'method': 'VolumePairList',
'config': {'number_assets': 20}
}
mocker.patch('freqtrade.exchange.Exchange.exchange_has', MagicMock(return_value=True))
worker = get_patched_worker(mocker, default_conf)
assert worker.state is State.RUNNING
def test_startup_trade_reinit(default_conf, edge_conf, mocker):
mocker.patch('freqtrade.exchange.Exchange.exchange_has', MagicMock(return_value=True))
reinit_mock = MagicMock()
mocker.patch('freqtrade.persistence.Trade.stoploss_reinitialization', reinit_mock)
ftbot = get_patched_freqtradebot(mocker, default_conf)
ftbot.startup()
assert reinit_mock.call_count == 1
reinit_mock.reset_mock()
ftbot = get_patched_freqtradebot(mocker, edge_conf)
ftbot.startup()
assert reinit_mock.call_count == 0

View File

@ -7,10 +7,11 @@ import pytest
from freqtrade import OperationalException
from freqtrade.arguments import Arguments
from freqtrade.worker import Worker
from freqtrade.freqtradebot import FreqtradeBot
from freqtrade.main import main
from freqtrade.state import State
from freqtrade.tests.conftest import log_has, patch_exchange
from freqtrade.worker import Worker
def test_parse_args_backtesting(mocker) -> None:
@ -18,8 +19,10 @@ def test_parse_args_backtesting(mocker) -> None:
Test that main() can start backtesting and also ensure we can pass some specific arguments
further argument parsing is done in test_arguments.py
"""
backtesting_mock = mocker.patch('freqtrade.optimize.backtesting.start', MagicMock())
main(['backtesting'])
backtesting_mock = mocker.patch('freqtrade.optimize.start_backtesting', MagicMock())
# it's sys.exit(0) at the end of backtesting
with pytest.raises(SystemExit):
main(['backtesting'])
assert backtesting_mock.call_count == 1
call_args = backtesting_mock.call_args[0][0]
assert call_args.config == ['config.json']
@ -31,8 +34,10 @@ def test_parse_args_backtesting(mocker) -> None:
def test_main_start_hyperopt(mocker) -> None:
hyperopt_mock = mocker.patch('freqtrade.optimize.hyperopt.start', MagicMock())
main(['hyperopt'])
hyperopt_mock = mocker.patch('freqtrade.optimize.start_hyperopt', MagicMock())
# it's sys.exit(0) at the end of hyperopt
with pytest.raises(SystemExit):
main(['hyperopt'])
assert hyperopt_mock.call_count == 1
call_args = hyperopt_mock.call_args[0][0]
assert call_args.config == ['config.json']
@ -107,24 +112,30 @@ def test_main_operational_exception(mocker, default_conf, caplog) -> None:
def test_main_reload_conf(mocker, default_conf, caplog) -> None:
patch_exchange(mocker)
mocker.patch('freqtrade.freqtradebot.FreqtradeBot.cleanup', MagicMock())
mocker.patch('freqtrade.worker.Worker._worker', MagicMock(return_value=State.RELOAD_CONF))
# Simulate Running, reload, running workflow
worker_mock = MagicMock(side_effect=[State.RUNNING,
State.RELOAD_CONF,
State.RUNNING,
OperationalException("Oh snap!")])
mocker.patch('freqtrade.worker.Worker._worker', worker_mock)
mocker.patch(
'freqtrade.configuration.Configuration._load_config_file',
lambda *args, **kwargs: default_conf
)
reconfigure_mock = mocker.patch('freqtrade.main.Worker._reconfigure', MagicMock())
mocker.patch('freqtrade.freqtradebot.RPCManager', MagicMock())
mocker.patch('freqtrade.freqtradebot.persistence.init', MagicMock())
# Raise exception as side effect to avoid endless loop
reconfigure_mock = mocker.patch(
'freqtrade.main.Worker._reconfigure', MagicMock(side_effect=Exception)
)
args = Arguments(['-c', 'config.json.example'], '').get_parsed_arg()
worker = Worker(args=args, config=default_conf)
with pytest.raises(SystemExit):
main(['-c', 'config.json.example'])
assert reconfigure_mock.call_count == 1
assert log_has('Using config: config.json.example ...', caplog.record_tuples)
assert worker_mock.call_count == 4
assert reconfigure_mock.call_count == 1
assert isinstance(worker.freqtrade, FreqtradeBot)
def test_reconfigure(mocker, default_conf) -> None:

View File

@ -6,7 +6,7 @@ from unittest.mock import MagicMock
from freqtrade.data.converter import parse_ticker_dataframe
from freqtrade.misc import (common_datearray, datesarray_to_datetimearray,
file_dump_json, file_load_json, format_ms_time, shorten_date)
from freqtrade.data.history import load_tickerdata_file, make_testdata_path
from freqtrade.data.history import load_tickerdata_file, pair_data_filename
from freqtrade.strategy.default_strategy import DefaultStrategy
@ -17,7 +17,8 @@ def test_shorten_date() -> None:
def test_datesarray_to_datetimearray(ticker_history_list):
dataframes = parse_ticker_dataframe(ticker_history_list, "5m", fill_missing=True)
dataframes = parse_ticker_dataframe(ticker_history_list, "5m", pair="UNITTEST/BTC",
fill_missing=True)
dates = datesarray_to_datetimearray(dataframes['date'])
assert isinstance(dates[0], datetime.datetime)
@ -34,7 +35,8 @@ def test_datesarray_to_datetimearray(ticker_history_list):
def test_common_datearray(default_conf) -> None:
strategy = DefaultStrategy(default_conf)
tick = load_tickerdata_file(None, 'UNITTEST/BTC', '1m')
tickerlist = {'UNITTEST/BTC': parse_ticker_dataframe(tick, "1m", fill_missing=True)}
tickerlist = {'UNITTEST/BTC': parse_ticker_dataframe(tick, "1m", pair="UNITTEST/BTC",
fill_missing=True)}
dataframes = strategy.tickerdata_to_dataframe(tickerlist)
dates = common_datearray(dataframes)
@ -60,13 +62,13 @@ def test_file_dump_json(mocker) -> None:
def test_file_load_json(mocker) -> None:
# 7m .json does not exist
ret = file_load_json(make_testdata_path(None).joinpath('UNITTEST_BTC-7m.json'))
ret = file_load_json(pair_data_filename(None, 'UNITTEST/BTC', '7m'))
assert not ret
# 1m json exists (but no .gz exists)
ret = file_load_json(make_testdata_path(None).joinpath('UNITTEST_BTC-1m.json'))
ret = file_load_json(pair_data_filename(None, 'UNITTEST/BTC', '1m'))
assert ret
# 8 .json is empty and will fail if it's loaded. .json.gz is a copy of 1.json
ret = file_load_json(make_testdata_path(None).joinpath('UNITTEST_BTC-8m.json'))
ret = file_load_json(pair_data_filename(None, 'UNITTEST/BTC', '8m'))
assert ret

View File

@ -1,7 +1,8 @@
# pragma pylint: disable=missing-docstring, C0103
from unittest.mock import MagicMock
import logging
from unittest.mock import MagicMock
import arrow
import pytest
from sqlalchemy import create_engine
@ -10,14 +11,53 @@ from freqtrade.persistence import Trade, clean_dry_run_db, init
from freqtrade.tests.conftest import log_has
@pytest.fixture(scope='function')
def init_persistence(default_conf):
init(default_conf)
def create_mock_trades(fee):
"""
Create some fake trades ...
"""
# Simulate dry_run entries
trade = Trade(
pair='ETH/BTC',
stake_amount=0.001,
amount=123.0,
fee_open=fee.return_value,
fee_close=fee.return_value,
open_rate=0.123,
exchange='bittrex',
open_order_id='dry_run_buy_12345'
)
Trade.session.add(trade)
trade = Trade(
pair='ETC/BTC',
stake_amount=0.001,
amount=123.0,
fee_open=fee.return_value,
fee_close=fee.return_value,
open_rate=0.123,
exchange='bittrex',
is_open=False,
open_order_id='dry_run_sell_12345'
)
Trade.session.add(trade)
# Simulate prod entry
trade = Trade(
pair='ETC/BTC',
stake_amount=0.001,
amount=123.0,
fee_open=fee.return_value,
fee_close=fee.return_value,
open_rate=0.123,
exchange='bittrex',
open_order_id='prod_buy_12345'
)
Trade.session.add(trade)
def test_init_create_session(default_conf):
# Check if init create a session
init(default_conf)
init(default_conf['db_url'], default_conf['dry_run'])
assert hasattr(Trade, 'session')
assert 'Session' in type(Trade.session).__name__
@ -27,7 +67,7 @@ def test_init_custom_db_url(default_conf, mocker):
default_conf.update({'db_url': 'sqlite:///tmp/freqtrade2_test.sqlite'})
create_engine_mock = mocker.patch('freqtrade.persistence.create_engine', MagicMock())
init(default_conf)
init(default_conf['db_url'], default_conf['dry_run'])
assert create_engine_mock.call_count == 1
assert create_engine_mock.mock_calls[0][1][0] == 'sqlite:///tmp/freqtrade2_test.sqlite'
@ -36,7 +76,7 @@ def test_init_invalid_db_url(default_conf):
# Update path to a value other than default, but still in-memory
default_conf.update({'db_url': 'unknown:///some.url'})
with pytest.raises(OperationalException, match=r'.*no valid database URL*'):
init(default_conf)
init(default_conf['db_url'], default_conf['dry_run'])
def test_init_prod_db(default_conf, mocker):
@ -45,7 +85,7 @@ def test_init_prod_db(default_conf, mocker):
create_engine_mock = mocker.patch('freqtrade.persistence.create_engine', MagicMock())
init(default_conf)
init(default_conf['db_url'], default_conf['dry_run'])
assert create_engine_mock.call_count == 1
assert create_engine_mock.mock_calls[0][1][0] == 'sqlite:///tradesv3.sqlite'
@ -56,7 +96,7 @@ def test_init_dryrun_db(default_conf, mocker):
create_engine_mock = mocker.patch('freqtrade.persistence.create_engine', MagicMock())
init(default_conf)
init(default_conf['db_url'], default_conf['dry_run'])
assert create_engine_mock.call_count == 1
assert create_engine_mock.mock_calls[0][1][0] == 'sqlite://'
@ -335,8 +375,8 @@ def test_calc_profit_percent(limit_buy_order, limit_sell_order, fee):
assert trade.calc_profit_percent(fee=0.003) == 0.06147824
@pytest.mark.usefixtures("init_persistence")
def test_clean_dry_run_db(default_conf, fee):
init(default_conf)
# Simulate dry_run entries
trade = Trade(
@ -423,7 +463,7 @@ def test_migrate_old(mocker, default_conf, fee):
engine.execute(create_table_old)
engine.execute(insert_table_old)
# Run init to test migration
init(default_conf)
init(default_conf['db_url'], default_conf['dry_run'])
assert len(Trade.query.filter(Trade.id == 1).all()) == 1
trade = Trade.query.filter(Trade.id == 1).first()
@ -496,7 +536,7 @@ def test_migrate_new(mocker, default_conf, fee, caplog):
engine.execute("create table trades_bak1 as select * from trades")
# Run init to test migration
init(default_conf)
init(default_conf['db_url'], default_conf['dry_run'])
assert len(Trade.query.filter(Trade.id == 1).all()) == 1
trade = Trade.query.filter(Trade.id == 1).first()
@ -565,7 +605,7 @@ def test_migrate_mid_state(mocker, default_conf, fee, caplog):
engine.execute(insert_table_old)
# Run init to test migration
init(default_conf)
init(default_conf['db_url'], default_conf['dry_run'])
assert len(Trade.query.filter(Trade.id == 1).all()) == 1
trade = Trade.query.filter(Trade.id == 1).first()
@ -667,8 +707,15 @@ def test_adjust_min_max_rates(fee):
assert trade.min_rate == 0.96
@pytest.mark.usefixtures("init_persistence")
def test_get_open(default_conf, fee):
init(default_conf)
create_mock_trades(fee)
assert len(Trade.get_open_trades()) == 2
@pytest.mark.usefixtures("init_persistence")
def test_to_json(default_conf, fee):
# Simulate dry_run entries
trade = Trade(
@ -677,36 +724,117 @@ def test_get_open(default_conf, fee):
amount=123.0,
fee_open=fee.return_value,
fee_close=fee.return_value,
open_date=arrow.utcnow().shift(hours=-2).datetime,
open_rate=0.123,
exchange='bittrex',
open_order_id='dry_run_buy_12345'
)
Trade.session.add(trade)
result = trade.to_json()
assert isinstance(result, dict)
print(result)
assert result == {'trade_id': None,
'pair': 'ETH/BTC',
'open_date_hum': '2 hours ago',
'open_date': trade.open_date.strftime("%Y-%m-%d %H:%M:%S"),
'close_date_hum': None,
'close_date': None,
'open_rate': 0.123,
'close_rate': None,
'amount': 123.0,
'stake_amount': 0.001,
'stop_loss': None,
'stop_loss_pct': None,
'initial_stop_loss': None,
'initial_stop_loss_pct': None}
# Simulate dry_run entries
trade = Trade(
pair='ETC/BTC',
pair='XRP/BTC',
stake_amount=0.001,
amount=123.0,
amount=100.0,
fee_open=fee.return_value,
fee_close=fee.return_value,
open_date=arrow.utcnow().shift(hours=-2).datetime,
close_date=arrow.utcnow().shift(hours=-1).datetime,
open_rate=0.123,
close_rate=0.125,
exchange='bittrex',
is_open=False,
open_order_id='dry_run_sell_12345'
)
Trade.session.add(trade)
result = trade.to_json()
assert isinstance(result, dict)
# Simulate prod entry
assert result == {'trade_id': None,
'pair': 'XRP/BTC',
'open_date_hum': '2 hours ago',
'open_date': trade.open_date.strftime("%Y-%m-%d %H:%M:%S"),
'close_date_hum': 'an hour ago',
'close_date': trade.close_date.strftime("%Y-%m-%d %H:%M:%S"),
'open_rate': 0.123,
'close_rate': 0.125,
'amount': 100.0,
'stake_amount': 0.001,
'stop_loss': None,
'stop_loss_pct': None,
'initial_stop_loss': None,
'initial_stop_loss_pct': None}
def test_stoploss_reinitialization(default_conf, fee):
init(default_conf['db_url'])
trade = Trade(
pair='ETC/BTC',
pair='ETH/BTC',
stake_amount=0.001,
amount=123.0,
fee_open=fee.return_value,
open_date=arrow.utcnow().shift(hours=-2).datetime,
amount=10,
fee_close=fee.return_value,
open_rate=0.123,
exchange='bittrex',
open_order_id='prod_buy_12345'
open_rate=1,
max_rate=1,
)
trade.adjust_stop_loss(trade.open_rate, 0.05, True)
assert trade.stop_loss == 0.95
assert trade.stop_loss_pct == -0.05
assert trade.initial_stop_loss == 0.95
assert trade.initial_stop_loss_pct == -0.05
Trade.session.add(trade)
assert len(Trade.get_open_trades()) == 2
# Lower stoploss
Trade.stoploss_reinitialization(0.06)
trades = Trade.get_open_trades()
assert len(trades) == 1
trade_adj = trades[0]
assert trade_adj.stop_loss == 0.94
assert trade_adj.stop_loss_pct == -0.06
assert trade_adj.initial_stop_loss == 0.94
assert trade_adj.initial_stop_loss_pct == -0.06
# Raise stoploss
Trade.stoploss_reinitialization(0.04)
trades = Trade.get_open_trades()
assert len(trades) == 1
trade_adj = trades[0]
assert trade_adj.stop_loss == 0.96
assert trade_adj.stop_loss_pct == -0.04
assert trade_adj.initial_stop_loss == 0.96
assert trade_adj.initial_stop_loss_pct == -0.04
# Trailing stoploss (move stoplos up a bit)
trade.adjust_stop_loss(1.02, 0.04)
assert trade_adj.stop_loss == 0.9792
assert trade_adj.initial_stop_loss == 0.96
Trade.stoploss_reinitialization(0.04)
trades = Trade.get_open_trades()
assert len(trades) == 1
trade_adj = trades[0]
# Stoploss should not change in this case.
assert trade_adj.stop_loss == 0.9792
assert trade_adj.stop_loss_pct == -0.04
assert trade_adj.initial_stop_loss == 0.96
assert trade_adj.initial_stop_loss_pct == -0.04

View File

@ -0,0 +1,189 @@
from unittest.mock import MagicMock
from plotly import tools
import plotly.graph_objs as go
from copy import deepcopy
from freqtrade.arguments import TimeRange
from freqtrade.data import history
from freqtrade.data.btanalysis import load_backtest_data
from freqtrade.plot.plotting import (generate_graph, generate_plot_file,
generate_row, plot_trades)
from freqtrade.strategy.default_strategy import DefaultStrategy
from freqtrade.tests.conftest import log_has, log_has_re
def fig_generating_mock(fig, *args, **kwargs):
""" Return Fig - used to mock generate_row and plot_trades"""
return fig
def find_trace_in_fig_data(data, search_string: str):
matches = filter(lambda x: x.name == search_string, data)
return next(matches)
def generage_empty_figure():
return tools.make_subplots(
rows=3,
cols=1,
shared_xaxes=True,
row_width=[1, 1, 4],
vertical_spacing=0.0001,
)
def test_generate_row(default_conf, caplog):
pair = "UNITTEST/BTC"
timerange = TimeRange(None, 'line', 0, -1000)
data = history.load_pair_history(pair=pair, ticker_interval='1m',
datadir=None, timerange=timerange)
indicators1 = ["ema10"]
indicators2 = ["macd"]
# Generate buy/sell signals and indicators
strat = DefaultStrategy(default_conf)
data = strat.analyze_ticker(data, {'pair': pair})
fig = generage_empty_figure()
# Row 1
fig1 = generate_row(fig=deepcopy(fig), row=1, indicators=indicators1, data=data)
figure = fig1.layout.figure
ema10 = find_trace_in_fig_data(figure.data, "ema10")
assert isinstance(ema10, go.Scatter)
assert ema10.yaxis == "y"
fig2 = generate_row(fig=deepcopy(fig), row=3, indicators=indicators2, data=data)
figure = fig2.layout.figure
macd = find_trace_in_fig_data(figure.data, "macd")
assert isinstance(macd, go.Scatter)
assert macd.yaxis == "y3"
# No indicator found
fig3 = generate_row(fig=deepcopy(fig), row=3, indicators=['no_indicator'], data=data)
assert fig == fig3
assert log_has_re(r'Indicator "no_indicator" ignored\..*', caplog.record_tuples)
def test_plot_trades(caplog):
fig1 = generage_empty_figure()
# nothing happens when no trades are available
fig = plot_trades(fig1, None)
assert fig == fig1
assert log_has("No trades found.", caplog.record_tuples)
pair = "ADA/BTC"
filename = history.make_testdata_path(None) / "backtest-result_test.json"
trades = load_backtest_data(filename)
trades = trades.loc[trades['pair'] == pair]
fig = plot_trades(fig, trades)
figure = fig1.layout.figure
# Check buys - color, should be in first graph, ...
trade_buy = find_trace_in_fig_data(figure.data, "trade_buy")
assert isinstance(trade_buy, go.Scatter)
assert trade_buy.yaxis == 'y'
assert len(trades) == len(trade_buy.x)
assert trade_buy.marker.color == 'green'
trade_sell = find_trace_in_fig_data(figure.data, "trade_sell")
assert isinstance(trade_sell, go.Scatter)
assert trade_sell.yaxis == 'y'
assert len(trades) == len(trade_sell.x)
assert trade_sell.marker.color == 'red'
def test_generate_graph_no_signals_no_trades(default_conf, mocker, caplog):
row_mock = mocker.patch('freqtrade.plot.plotting.generate_row',
MagicMock(side_effect=fig_generating_mock))
trades_mock = mocker.patch('freqtrade.plot.plotting.plot_trades',
MagicMock(side_effect=fig_generating_mock))
pair = "UNITTEST/BTC"
timerange = TimeRange(None, 'line', 0, -1000)
data = history.load_pair_history(pair=pair, ticker_interval='1m',
datadir=None, timerange=timerange)
data['buy'] = 0
data['sell'] = 0
indicators1 = []
indicators2 = []
fig = generate_graph(pair=pair, data=data, trades=None,
indicators1=indicators1, indicators2=indicators2)
assert isinstance(fig, go.Figure)
assert fig.layout.title.text == pair
figure = fig.layout.figure
assert len(figure.data) == 2
# Candlesticks are plotted first
candles = find_trace_in_fig_data(figure.data, "Price")
assert isinstance(candles, go.Candlestick)
volume = find_trace_in_fig_data(figure.data, "Volume")
assert isinstance(volume, go.Bar)
assert row_mock.call_count == 2
assert trades_mock.call_count == 1
assert log_has("No buy-signals found.", caplog.record_tuples)
assert log_has("No sell-signals found.", caplog.record_tuples)
def test_generate_graph_no_trades(default_conf, mocker):
row_mock = mocker.patch('freqtrade.plot.plotting.generate_row',
MagicMock(side_effect=fig_generating_mock))
trades_mock = mocker.patch('freqtrade.plot.plotting.plot_trades',
MagicMock(side_effect=fig_generating_mock))
pair = 'UNITTEST/BTC'
timerange = TimeRange(None, 'line', 0, -1000)
data = history.load_pair_history(pair=pair, ticker_interval='1m',
datadir=None, timerange=timerange)
# Generate buy/sell signals and indicators
strat = DefaultStrategy(default_conf)
data = strat.analyze_ticker(data, {'pair': pair})
indicators1 = []
indicators2 = []
fig = generate_graph(pair=pair, data=data, trades=None,
indicators1=indicators1, indicators2=indicators2)
assert isinstance(fig, go.Figure)
assert fig.layout.title.text == pair
figure = fig.layout.figure
assert len(figure.data) == 6
# Candlesticks are plotted first
candles = find_trace_in_fig_data(figure.data, "Price")
assert isinstance(candles, go.Candlestick)
volume = find_trace_in_fig_data(figure.data, "Volume")
assert isinstance(volume, go.Bar)
buy = find_trace_in_fig_data(figure.data, "buy")
assert isinstance(buy, go.Scatter)
# All buy-signals should be plotted
assert int(data.buy.sum()) == len(buy.x)
sell = find_trace_in_fig_data(figure.data, "sell")
assert isinstance(sell, go.Scatter)
# All buy-signals should be plotted
assert int(data.sell.sum()) == len(sell.x)
assert find_trace_in_fig_data(figure.data, "BB lower")
assert find_trace_in_fig_data(figure.data, "BB upper")
assert row_mock.call_count == 2
assert trades_mock.call_count == 1
def test_generate_plot_file(mocker, caplog):
fig = generage_empty_figure()
plot_mock = mocker.patch("freqtrade.plot.plotting.plot", MagicMock())
generate_plot_file(fig, "UNITTEST/BTC", "5m")
assert plot_mock.call_count == 1
assert plot_mock.call_args[0][0] == fig
assert (plot_mock.call_args_list[0][1]['filename']
== "user_data/plots/freqtrade-plot-UNITTEST_BTC-5m.html")

View File

@ -0,0 +1,42 @@
from freqtrade.utils import setup_utils_configuration, start_list_exchanges
from freqtrade.tests.conftest import get_args
from freqtrade.state import RunMode
import re
def test_setup_utils_configuration():
args = [
'--config', 'config.json.example',
]
config = setup_utils_configuration(get_args(args), RunMode.OTHER)
assert "exchange" in config
assert config['exchange']['dry_run'] is True
assert config['exchange']['key'] == ''
assert config['exchange']['secret'] == ''
def test_list_exchanges(capsys):
args = [
"list-exchanges",
]
start_list_exchanges(get_args(args))
captured = capsys.readouterr()
assert re.match(r"Exchanges supported by ccxt and available.*", captured.out)
assert re.match(r".*binance,.*", captured.out)
assert re.match(r".*bittrex,.*", captured.out)
# Test with --one-column
args = [
"list-exchanges",
"--one-column",
]
start_list_exchanges(get_args(args))
captured = capsys.readouterr()
assert not re.match(r"Exchanges supported by ccxt and available.*", captured.out)
assert re.search(r"^binance$", captured.out, re.MULTILINE)
assert re.search(r"^bittrex$", captured.out, re.MULTILINE)

41
freqtrade/utils.py Normal file
View File

@ -0,0 +1,41 @@
import logging
from argparse import Namespace
from typing import Any, Dict
from freqtrade.configuration import Configuration
from freqtrade.exchange import available_exchanges
from freqtrade.state import RunMode
logger = logging.getLogger(__name__)
def setup_utils_configuration(args: Namespace, method: RunMode) -> Dict[str, Any]:
"""
Prepare the configuration for utils subcommands
:param args: Cli args from Arguments()
:return: Configuration
"""
configuration = Configuration(args, method)
config = configuration.load_config()
config['exchange']['dry_run'] = True
# Ensure we do not use Exchange credentials
config['exchange']['key'] = ''
config['exchange']['secret'] = ''
return config
def start_list_exchanges(args: Namespace) -> None:
"""
Print available exchanges
:param args: Cli args from Arguments()
:return: None
"""
if args.print_one_column:
print('\n'.join(available_exchanges()))
else:
print(f"Exchanges supported by ccxt and available for Freqtrade: "
f"{', '.join(available_exchanges())}")

View File

@ -4,13 +4,13 @@
# QTPyLib: Quantitative Trading Python Library
# https://github.com/ranaroussi/qtpylib
#
# Copyright 2016 Ran Aroussi
# Copyright 2016-2018 Ran Aroussi
#
# Licensed under the GNU Lesser General Public License, v3.0 (the "License");
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.gnu.org/licenses/lgpl-3.0.en.html
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
@ -19,8 +19,8 @@
# limitations under the License.
#
import sys
import warnings
import sys
from datetime import datetime, timedelta
import numpy as np
@ -62,19 +62,20 @@ def numpy_rolling_series(func):
@numpy_rolling_series
def numpy_rolling_mean(data, window, as_source=False):
return np.mean(numpy_rolling_window(data, window), -1)
return np.mean(numpy_rolling_window(data, window), axis=-1)
@numpy_rolling_series
def numpy_rolling_std(data, window, as_source=False):
return np.std(numpy_rolling_window(data, window), -1)
return np.std(numpy_rolling_window(data, window), axis=-1, ddof=1)
# ---------------------------------------------
def session(df, start='17:00', end='16:00'):
""" remove previous globex day from df """
if len(df) == 0:
if df.empty:
return df
# get start/end/now as decimals
@ -103,47 +104,47 @@ def session(df, start='17:00', end='16:00'):
return df.copy()
# ---------------------------------------------
def heikinashi(bars):
bars = bars.copy()
bars['ha_close'] = (bars['open'] + bars['high'] +
bars['low'] + bars['close']) / 4
bars['ha_open'] = (bars['open'].shift(1) + bars['close'].shift(1)) / 2
bars.loc[:1, 'ha_open'] = bars['open'].values[0]
for x in range(2):
bars.loc[1:, 'ha_open'] = (
(bars['ha_open'].shift(1) + bars['ha_close'].shift(1)) / 2)[1:]
# ha open
bars.at[0, 'ha_open'] = (bars.at[0, 'open'] + bars.at[0, 'close']) / 2
for i in range(1, len(bars)):
bars.at[i, 'ha_open'] = (bars.at[i - 1, 'ha_open'] + bars.at[i - 1, 'ha_close']) / 2
bars['ha_high'] = bars.loc[:, ['high', 'ha_open', 'ha_close']].max(axis=1)
bars['ha_low'] = bars.loc[:, ['low', 'ha_open', 'ha_close']].min(axis=1)
return pd.DataFrame(
index=bars.index,
data={
'open': bars['ha_open'],
'high': bars['ha_high'],
'low': bars['ha_low'],
'close': bars['ha_close']})
return pd.DataFrame(index=bars.index,
data={'open': bars['ha_open'],
'high': bars['ha_high'],
'low': bars['ha_low'],
'close': bars['ha_close']})
# ---------------------------------------------
def tdi(series, rsi_len=13, bollinger_len=34, rsi_smoothing=2,
rsi_signal_len=7, bollinger_std=1.6185):
rsi_series = rsi(series, rsi_len)
bb_series = bollinger_bands(rsi_series, bollinger_len, bollinger_std)
signal = sma(rsi_series, rsi_signal_len)
rsi_series = sma(rsi_series, rsi_smoothing)
def tdi(series, rsi_lookback=13, rsi_smooth_len=2,
rsi_signal_len=7, bb_lookback=34, bb_std=1.6185):
rsi_data = rsi(series, rsi_lookback)
rsi_smooth = sma(rsi_data, rsi_smooth_len)
rsi_signal = sma(rsi_data, rsi_signal_len)
bb_series = bollinger_bands(rsi_data, bb_lookback, bb_std)
return pd.DataFrame(index=series.index, data={
"rsi": rsi_series,
"signal": signal,
"bbupper": bb_series['upper'],
"bblower": bb_series['lower'],
"bbmid": bb_series['mid']
"rsi": rsi_data,
"rsi_signal": rsi_signal,
"rsi_smooth": rsi_smooth,
"rsi_bb_upper": bb_series['upper'],
"rsi_bb_lower": bb_series['lower'],
"rsi_bb_mid": bb_series['mid']
})
# ---------------------------------------------
@ -163,8 +164,8 @@ def awesome_oscillator(df, weighted=False, fast=5, slow=34):
# ---------------------------------------------
def nans(len=1):
mtx = np.empty(len)
def nans(length=1):
mtx = np.empty(length)
mtx[:] = np.nan
return mtx
@ -222,7 +223,7 @@ def crossed(series1, series2, direction=None):
if isinstance(series1, np.ndarray):
series1 = pd.Series(series1)
if isinstance(series2, int) or isinstance(series2, float) or isinstance(series2, np.ndarray):
if isinstance(series2, (float, int, np.ndarray)):
series2 = pd.Series(index=series1.index, data=series2)
if direction is None or direction == "above":
@ -256,7 +257,7 @@ def rolling_std(series, window=200, min_periods=None):
else:
try:
return series.rolling(window=window, min_periods=min_periods).std()
except BaseException:
except Exception as e: # noqa: F841
return pd.Series(series).rolling(window=window, min_periods=min_periods).std()
# ---------------------------------------------
@ -269,7 +270,7 @@ def rolling_mean(series, window=200, min_periods=None):
else:
try:
return series.rolling(window=window, min_periods=min_periods).mean()
except BaseException:
except Exception as e: # noqa: F841
return pd.Series(series).rolling(window=window, min_periods=min_periods).mean()
# ---------------------------------------------
@ -279,7 +280,7 @@ def rolling_min(series, window=14, min_periods=None):
min_periods = window if min_periods is None else min_periods
try:
return series.rolling(window=window, min_periods=min_periods).min()
except BaseException:
except Exception as e: # noqa: F841
return pd.Series(series).rolling(window=window, min_periods=min_periods).min()
@ -289,7 +290,7 @@ def rolling_max(series, window=14, min_periods=None):
min_periods = window if min_periods is None else min_periods
try:
return series.rolling(window=window, min_periods=min_periods).min()
except BaseException:
except Exception as e: # noqa: F841
return pd.Series(series).rolling(window=window, min_periods=min_periods).min()
@ -299,16 +300,17 @@ def rolling_weighted_mean(series, window=200, min_periods=None):
min_periods = window if min_periods is None else min_periods
try:
return series.ewm(span=window, min_periods=min_periods).mean()
except BaseException:
except Exception as e: # noqa: F841
return pd.ewma(series, span=window, min_periods=min_periods)
# ---------------------------------------------
def hull_moving_average(series, window=200):
wma = (2 * rolling_weighted_mean(series, window=window / 2)) - \
rolling_weighted_mean(series, window=window)
return rolling_weighted_mean(wma, window=np.sqrt(window))
def hull_moving_average(series, window=200, min_periods=None):
min_periods = window if min_periods is None else min_periods
ma = (2 * rolling_weighted_mean(series, window / 2, min_periods)) - \
rolling_weighted_mean(series, window, min_periods)
return rolling_weighted_mean(ma, np.sqrt(window), min_periods)
# ---------------------------------------------
@ -325,8 +327,8 @@ def wma(series, window=200, min_periods=None):
# ---------------------------------------------
def hma(series, window=200):
return hull_moving_average(series, window=window)
def hma(series, window=200, min_periods=None):
return hull_moving_average(series, window=window, min_periods=min_periods)
# ---------------------------------------------
@ -361,7 +363,8 @@ def rolling_vwap(bars, window=200, min_periods=None):
min_periods=min_periods).sum()
right = volume.rolling(window=window, min_periods=min_periods).sum()
return pd.Series(index=bars.index, data=(left / right))
return pd.Series(index=bars.index, data=(left / right)
).replace([np.inf, -np.inf], float('NaN')).ffill()
# ---------------------------------------------
@ -370,6 +373,7 @@ def rsi(series, window=14):
"""
compute the n period relative strength indicator
"""
# 100-(100/relative_strength)
deltas = np.diff(series)
seed = deltas[:window + 1]
@ -406,13 +410,13 @@ def macd(series, fast=3, slow=10, smooth=16):
using a fast and slow exponential moving avg'
return value is emaslow, emafast, macd which are len(x) arrays
"""
macd = rolling_weighted_mean(series, window=fast) - \
macd_line = rolling_weighted_mean(series, window=fast) - \
rolling_weighted_mean(series, window=slow)
signal = rolling_weighted_mean(macd, window=smooth)
histogram = macd - signal
# return macd, signal, histogram
signal = rolling_weighted_mean(macd_line, window=smooth)
histogram = macd_line - signal
# return macd_line, signal, histogram
return pd.DataFrame(index=series.index, data={
'macd': macd.values,
'macd': macd_line.values,
'signal': signal.values,
'histogram': histogram.values
})
@ -421,14 +425,14 @@ def macd(series, fast=3, slow=10, smooth=16):
# ---------------------------------------------
def bollinger_bands(series, window=20, stds=2):
sma = rolling_mean(series, window=window)
std = rolling_std(series, window=window)
upper = sma + std * stds
lower = sma - std * stds
ma = rolling_mean(series, window=window, min_periods=1)
std = rolling_std(series, window=window, min_periods=1)
upper = ma + std * stds
lower = ma - std * stds
return pd.DataFrame(index=series.index, data={
'upper': upper,
'mid': sma,
'mid': ma,
'lower': lower
})
@ -454,7 +458,7 @@ def returns(series):
try:
res = (series / series.shift(1) -
1).replace([np.inf, -np.inf], float('NaN'))
except BaseException:
except Exception as e: # noqa: F841
res = nans(len(series))
return pd.Series(index=series.index, data=res)
@ -466,7 +470,7 @@ def log_returns(series):
try:
res = np.log(series / series.shift(1)
).replace([np.inf, -np.inf], float('NaN'))
except BaseException:
except Exception as e: # noqa: F841
res = nans(len(series))
return pd.Series(index=series.index, data=res)
@ -479,7 +483,7 @@ def implied_volatility(series, window=252):
logret = np.log(series / series.shift(1)
).replace([np.inf, -np.inf], float('NaN'))
res = numpy_rolling_std(logret, window) * np.sqrt(window)
except BaseException:
except Exception as e: # noqa: F841
res = nans(len(series))
return pd.Series(index=series.index, data=res)
@ -530,32 +534,55 @@ def stoch(df, window=14, d=3, k=3, fast=False):
compute the n period relative strength indicator
http://excelta.blogspot.co.il/2013/09/stochastic-oscillator-technical.html
"""
highs_ma = pd.concat([df['high'].shift(i)
for i in np.arange(window)], 1).apply(list, 1)
highs_ma = highs_ma.T.max().T
lows_ma = pd.concat([df['low'].shift(i)
for i in np.arange(window)], 1).apply(list, 1)
lows_ma = lows_ma.T.min().T
my_df = pd.DataFrame(index=df.index)
fast_k = ((df['close'] - lows_ma) / (highs_ma - lows_ma)) * 100
fast_d = numpy_rolling_mean(fast_k, d)
my_df['rolling_max'] = df['high'].rolling(window).max()
my_df['rolling_min'] = df['low'].rolling(window).min()
my_df['fast_k'] = (
100 * (df['close'] - my_df['rolling_min']) /
(my_df['rolling_max'] - my_df['rolling_min'])
)
my_df['fast_d'] = my_df['fast_k'].rolling(d).mean()
if fast:
data = {
'k': fast_k,
'd': fast_d
}
return my_df.loc[:, ['fast_k', 'fast_d']]
else:
slow_k = numpy_rolling_mean(fast_k, k)
slow_d = numpy_rolling_mean(slow_k, d)
data = {
'k': slow_k,
'd': slow_d
}
my_df['slow_k'] = my_df['fast_k'].rolling(k).mean()
my_df['slow_d'] = my_df['slow_k'].rolling(d).mean()
return pd.DataFrame(index=df.index, data=data)
return my_df.loc[:, ['slow_k', 'slow_d']]
# ---------------------------------------------
def zlma(series, window=20, min_periods=None, kind="ema"):
"""
John Ehlers' Zero lag (exponential) moving average
https://en.wikipedia.org/wiki/Zero_lag_exponential_moving_average
"""
min_periods = window if min_periods is None else min_periods
lag = (window - 1) // 2
series = 2 * series - series.shift(lag)
if kind in ['ewm', 'ema']:
return wma(series, lag, min_periods)
elif kind == "hma":
return hma(series, lag, min_periods)
return sma(series, lag, min_periods)
def zlema(series, window, min_periods=None):
return zlma(series, window, min_periods, kind="ema")
def zlsma(series, window, min_periods=None):
return zlma(series, window, min_periods, kind="sma")
def zlhma(series, window, min_periods=None):
return zlma(series, window, min_periods, kind="hma")
# ---------------------------------------------
@ -571,13 +598,13 @@ def zscore(bars, window=20, stds=1, col='close'):
def pvt(bars):
""" Price Volume Trend """
pvt = ((bars['close'] - bars['close'].shift(1)) /
bars['close'].shift(1)) * bars['volume']
return pvt.cumsum()
trend = ((bars['close'] - bars['close'].shift(1)) /
bars['close'].shift(1)) * bars['volume']
return trend.cumsum()
# =============================================
PandasObject.session = session
PandasObject.atr = atr
PandasObject.bollinger_bands = bollinger_bands
@ -613,4 +640,11 @@ PandasObject.rolling_weighted_mean = rolling_weighted_mean
PandasObject.sma = sma
PandasObject.wma = wma
PandasObject.ema = wma
PandasObject.hma = hma
PandasObject.zlsma = zlsma
PandasObject.zlwma = zlema
PandasObject.zlema = zlema
PandasObject.zlhma = zlhma
PandasObject.zlma = zlma

View File

@ -39,7 +39,7 @@ class Worker(object):
logger.debug("sd_notify: READY=1")
self._sd_notify.notify("READY=1")
def _init(self, reconfig: bool):
def _init(self, reconfig: bool) -> None:
"""
Also called from the _reconfigure() method (with reconfig=True).
"""
@ -63,17 +63,17 @@ class Worker(object):
return self.freqtrade.state
@state.setter
def state(self, value: State):
def state(self, value: State) -> None:
self.freqtrade.state = value
def run(self):
def run(self) -> None:
state = None
while True:
state = self._worker(old_state=state)
if state == State.RELOAD_CONF:
self.freqtrade = self._reconfigure()
self._reconfigure()
def _worker(self, old_state: State, throttle_secs: Optional[float] = None) -> State:
def _worker(self, old_state: Optional[State], throttle_secs: Optional[float] = None) -> State:
"""
Trading routine that must be run at each loop
:param old_state: the previous service state from the previous call
@ -91,7 +91,7 @@ class Worker(object):
})
logger.info('Changing state to: %s', state.name)
if state == State.RUNNING:
self.freqtrade.rpc.startup_messages(self._config, self.freqtrade.pairlists)
self.freqtrade.startup()
if state == State.STOPPED:
# Ping systemd watchdog before sleeping in the stopped state
@ -148,7 +148,7 @@ class Worker(object):
# state_changed = True
return state_changed
def _reconfigure(self):
def _reconfigure(self) -> None:
"""
Cleans up current freqtradebot instance, reloads the configuration and
replaces it with the new instance
@ -174,7 +174,7 @@ class Worker(object):
logger.debug("sd_notify: READY=1")
self._sd_notify.notify("READY=1")
def exit(self):
def exit(self) -> None:
# Tell systemd that we are exiting now
if self._sd_notify:
logger.debug("sd_notify: STOPPING=1")

View File

@ -2,19 +2,22 @@ site_name: Freqtrade
nav:
- About: index.md
- Installation: installation.md
- Installation Docker: docker.md
- Configuration: configuration.md
- Custom Strategy: bot-optimization.md
- Strategy Customization: strategy-customization.md
- Stoploss: stoploss.md
- Start the bot: bot-usage.md
- Control the bot:
- Telegram: telegram-usage.md
- Web Hook: webhook-config.md
- REST API: rest-api.md
- Backtesting: backtesting.md
- Hyperopt: hyperopt.md
- Edge positioning: edge.md
- Plotting: plotting.md
- Deprecated features: deprecated.md
- FAQ: faq.md
- Data Analysis: data-analysis.md
- SQL Cheatsheet: sql_cheatsheet.md
- Sandbox testing: sandbox-testing.md
- Contributors guide: developer.md

32
requirements-common.txt Normal file
View File

@ -0,0 +1,32 @@
# requirements without requirements installable via conda
# mainly used for Raspberry pi installs
ccxt==1.18.805
SQLAlchemy==1.3.5
python-telegram-bot==11.1.0
arrow==0.14.2
cachetools==3.1.1
requests==2.22.0
urllib3==1.24.2 # pyup: ignore
wrapt==1.11.2
scikit-learn==0.21.2
joblib==0.13.2
jsonschema==3.0.1
TA-Lib==0.4.17
tabulate==0.8.3
coinmarketcap==5.0.3
# Required for hyperopt
scikit-optimize==0.5.2
filelock==3.0.12
# find first, C search in arrays
py_find_1st==1.1.3
#Load ticker files 30% faster
python-rapidjson==0.7.2
# Notify systemd
sdnotify==0.3.2
# Api server
flask==1.0.3

View File

@ -1,12 +1,13 @@
# Include all requirements to run the bot.
-r requirements.txt
-r requirements-plot.txt
flake8==3.7.7
flake8-type-annotations==0.1.0
flake8-tidy-imports==2.0.0
pytest==4.4.1
pytest-mock==1.10.3
pytest==4.6.3
pytest-mock==1.10.4
pytest-asyncio==0.10.0
pytest-cov==2.6.1
coveralls==1.7.0
mypy==0.701
pytest-cov==2.7.1
coveralls==1.8.1
mypy==0.710

View File

@ -1,23 +0,0 @@
ccxt==1.18.472
SQLAlchemy==1.3.3
python-telegram-bot==11.1.0
arrow==0.13.1
cachetools==3.1.0
requests==2.21.0
urllib3==1.24.1
wrapt==1.11.1
scikit-learn==0.20.3
joblib==0.13.2
jsonschema==3.0.1
TA-Lib==0.4.17
tabulate==0.8.3
coinmarketcap==5.0.3
# Required for hyperopt
scikit-optimize==0.5.2
# find first, C search in arrays
py_find_1st==1.1.3
#Load ticker files 30% faster
python-rapidjson==0.7.0

View File

@ -1,5 +1,5 @@
# Include all requirements to run the bot.
-r requirements.txt
plotly==3.8.0
plotly==3.10.0

View File

@ -1,29 +1,6 @@
ccxt==1.18.472
SQLAlchemy==1.3.3
python-telegram-bot==11.1.0
arrow==0.13.1
cachetools==3.1.0
requests==2.21.0
urllib3==1.24.1
wrapt==1.11.1
numpy==1.16.2
# Load common requirements
-r requirements-common.txt
numpy==1.16.4
pandas==0.24.2
scikit-learn==0.20.3
joblib==0.13.2
scipy==1.2.1
jsonschema==3.0.1
TA-Lib==0.4.17
tabulate==0.8.3
coinmarketcap==5.0.3
# Required for hyperopt
scikit-optimize==0.5.2
# find first, C search in arrays
py_find_1st==1.1.3
# Load ticker files 30% faster
python-rapidjson==0.7.0
# Notify systemd
sdnotify==0.3.2
scipy==1.3.0

View File

@ -1,55 +1,67 @@
#!/usr/bin/env python3
"""
This script generates json data
This script generates json files with pairs history data
"""
import arrow
import json
import sys
from pathlib import Path
import arrow
from typing import Any, Dict
from typing import Any, Dict, List
from freqtrade.arguments import Arguments
from freqtrade.arguments import TimeRange
from freqtrade.exchange import Exchange
from freqtrade.arguments import Arguments, TimeRange
from freqtrade.configuration import Configuration
from freqtrade.data.history import download_pair_history
from freqtrade.configuration import Configuration, set_loggers
from freqtrade.exchange import Exchange
from freqtrade.misc import deep_merge_dicts
import logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
)
set_loggers(0)
logger = logging.getLogger('download_backtest_data')
DEFAULT_DL_PATH = 'user_data/data'
arguments = Arguments(sys.argv[1:], 'download utility')
arguments.testdata_dl_options()
args = arguments.parse_args()
arguments = Arguments(sys.argv[1:], 'Download backtest data')
arguments.common_options()
arguments.download_data_options()
timeframes = args.timeframes
# Do not read the default config if config is not specified
# in the command line options explicitely
args = arguments.parse_args(no_default_config=True)
# Use bittrex as default exchange
exchange_name = args.exchange or 'bittrex'
pairs: List = []
configuration = Configuration(args)
config: Dict[str, Any] = {}
if args.config:
configuration = Configuration(args)
config: Dict[str, Any] = {}
# Now expecting a list of config filenames here, not a string
for path in args.config:
print(f"Using config: {path}...")
logger.info(f"Using config: {path}...")
# Merge config options, overwriting old values
config = deep_merge_dicts(configuration._load_config_file(path), config)
config['stake_currency'] = ''
# Ensure we do not use Exchange credentials
config['exchange']['dry_run'] = True
config['exchange']['key'] = ''
config['exchange']['secret'] = ''
pairs = config['exchange']['pair_whitelist']
if config.get('ticker_interval'):
timeframes = args.timeframes or [config.get('ticker_interval')]
else:
timeframes = args.timeframes or ['1m', '5m']
else:
config = {
'stake_currency': '',
'dry_run': True,
'exchange': {
'name': args.exchange,
'name': exchange_name,
'key': '',
'secret': '',
'pair_whitelist': [],
@ -59,56 +71,72 @@ else:
}
}
}
timeframes = args.timeframes or ['1m', '5m']
configuration._load_logging_config(config)
dl_path = Path(DEFAULT_DL_PATH).joinpath(config['exchange']['name'])
if args.export:
dl_path = Path(args.export)
if args.config and args.exchange:
logger.warning("The --exchange option is ignored, "
"using exchange settings from the configuration file.")
if not dl_path.is_dir():
sys.exit(f'Directory {dl_path} does not exist.')
# Check if the exchange set by the user is supported
configuration.check_exchange(config)
configuration._load_datadir_config(config)
dl_path = Path(config['datadir'])
pairs_file = Path(args.pairs_file) if args.pairs_file else dl_path.joinpath('pairs.json')
if not pairs_file.exists():
sys.exit(f'No pairs file found with path {pairs_file}.')
with pairs_file.open() as file:
PAIRS = list(set(json.load(file)))
if not pairs or args.pairs_file:
logger.info(f'Reading pairs file "{pairs_file}".')
# Download pairs from the pairs file if no config is specified
# or if pairs file is specified explicitely
if not pairs_file.exists():
sys.exit(f'No pairs file found with path "{pairs_file}".')
PAIRS.sort()
with pairs_file.open() as file:
pairs = list(set(json.load(file)))
pairs.sort()
timerange = TimeRange()
if args.days:
time_since = arrow.utcnow().shift(days=-args.days).strftime("%Y%m%d")
timerange = arguments.parse_timerange(f'{time_since}-')
logger.info(f'About to download pairs: {pairs}, intervals: {timeframes} to {dl_path}')
print(f'About to download pairs: {PAIRS} to {dl_path}')
# Init exchange
exchange = Exchange(config)
pairs_not_available = []
for pair in PAIRS:
if pair not in exchange._api.markets:
pairs_not_available.append(pair)
print(f"skipping pair {pair}")
continue
for ticker_interval in timeframes:
pair_print = pair.replace('/', '_')
filename = f'{pair_print}-{ticker_interval}.json'
dl_file = dl_path.joinpath(filename)
if args.erase and dl_file.exists():
print(f'Deleting existing data for pair {pair}, interval {ticker_interval}')
dl_file.unlink()
try:
# Init exchange
exchange = Exchange(config)
print(f'downloading pair {pair}, interval {ticker_interval}')
download_pair_history(datadir=dl_path, exchange=exchange,
pair=pair,
ticker_interval=ticker_interval,
timerange=timerange)
for pair in pairs:
if pair not in exchange._api.markets:
pairs_not_available.append(pair)
logger.info(f"Skipping pair {pair}...")
continue
for ticker_interval in timeframes:
pair_print = pair.replace('/', '_')
filename = f'{pair_print}-{ticker_interval}.json'
dl_file = dl_path.joinpath(filename)
if args.erase and dl_file.exists():
logger.info(
f'Deleting existing data for pair {pair}, interval {ticker_interval}.')
dl_file.unlink()
logger.info(f'Downloading pair {pair}, interval {ticker_interval}.')
download_pair_history(datadir=dl_path, exchange=exchange,
pair=pair, ticker_interval=str(ticker_interval),
timerange=timerange)
if pairs_not_available:
print(f"Pairs [{','.join(pairs_not_available)}] not availble.")
except KeyboardInterrupt:
sys.exit("SIGINT received, aborting ...")
finally:
if pairs_not_available:
logger.info(
f"Pairs [{','.join(pairs_not_available)}] not available "
f"on exchange {config['exchange']['name']}.")

View File

@ -26,145 +26,21 @@ Example of usage:
"""
import logging
import sys
from argparse import Namespace
from pathlib import Path
from typing import Any, Dict, List
import pandas as pd
import plotly.graph_objs as go
import pytz
from plotly import tools
from plotly.offline import plot
from freqtrade import persistence
from freqtrade.arguments import Arguments, TimeRange
from freqtrade.arguments import Arguments
from freqtrade.data import history
from freqtrade.data.btanalysis import BT_DATA_COLUMNS, load_backtest_data
from freqtrade.exchange import Exchange
from freqtrade.optimize.backtesting import setup_configuration
from freqtrade.persistence import Trade
from freqtrade.resolvers import StrategyResolver
from freqtrade.data.btanalysis import (extract_trades_of_period,
load_backtest_data, load_trades_from_db)
from freqtrade.optimize import setup_configuration
from freqtrade.plot.plotting import generate_graph, generate_plot_file
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
from freqtrade.state import RunMode
logger = logging.getLogger(__name__)
_CONF: Dict[str, Any] = {}
timeZone = pytz.UTC
def load_trades(args: Namespace, pair: str, timerange: TimeRange) -> pd.DataFrame:
trades: pd.DataFrame = pd.DataFrame()
if args.db_url:
persistence.init(_CONF)
columns = ["pair", "profit", "open_time", "close_time",
"open_rate", "close_rate", "duration"]
for x in Trade.query.all():
print("date: {}".format(x.open_date))
trades = pd.DataFrame([(t.pair, t.calc_profit(),
t.open_date.replace(tzinfo=timeZone),
t.close_date.replace(tzinfo=timeZone) if t.close_date else None,
t.open_rate, t.close_rate,
t.close_date.timestamp() - t.open_date.timestamp()
if t.close_date else None)
for t in Trade.query.filter(Trade.pair.is_(pair)).all()],
columns=columns)
elif args.exportfilename:
file = Path(args.exportfilename)
if file.exists():
load_backtest_data(file)
else:
trades = pd.DataFrame([], columns=BT_DATA_COLUMNS)
return trades
def generate_plot_file(fig, pair, ticker_interval, is_last) -> None:
"""
Generate a plot html file from pre populated fig plotly object
:return: None
"""
logger.info('Generate plot file for %s', pair)
pair_name = pair.replace("/", "_")
file_name = 'freqtrade-plot-' + pair_name + '-' + ticker_interval + '.html'
Path("user_data/plots").mkdir(parents=True, exist_ok=True)
plot(fig, filename=str(Path('user_data/plots').joinpath(file_name)), auto_open=False)
if is_last:
plot(fig, filename=str(Path('user_data').joinpath('freqtrade-plot.html')), auto_open=False)
def get_trading_env(args: Namespace):
"""
Initalize freqtrade Exchange and Strategy, split pairs recieved in parameter
:return: Strategy
"""
global _CONF
# Load the configuration
_CONF.update(setup_configuration(args))
print(_CONF)
pairs = args.pairs.split(',')
if pairs is None:
logger.critical('Parameter --pairs mandatory;. E.g --pairs ETH/BTC,XRP/BTC')
exit()
# Load the strategy
try:
strategy = StrategyResolver(_CONF).strategy
exchange = Exchange(_CONF)
except AttributeError:
logger.critical(
'Impossible to load the strategy. Please check the file "user_data/strategies/%s.py"',
args.strategy
)
exit()
return [strategy, exchange, pairs]
def get_tickers_data(strategy, exchange, pairs: List[str], args):
"""
Get tickers data for each pairs on live or local, option defined in args
:return: dictinnary of tickers. output format: {'pair': tickersdata}
"""
ticker_interval = strategy.ticker_interval
timerange = Arguments.parse_timerange(args.timerange)
tickers = {}
if args.live:
logger.info('Downloading pairs.')
exchange.refresh_latest_ohlcv([(pair, ticker_interval) for pair in pairs])
for pair in pairs:
tickers[pair] = exchange.klines((pair, ticker_interval))
else:
tickers = history.load_data(
datadir=Path(str(_CONF.get("datadir"))),
pairs=pairs,
ticker_interval=ticker_interval,
refresh_pairs=_CONF.get('refresh_pairs', False),
timerange=timerange,
exchange=Exchange(_CONF)
)
# No ticker found, impossible to download, len mismatch
for pair, data in tickers.copy().items():
logger.debug("checking tickers data of pair: %s", pair)
logger.debug("data.empty: %s", data.empty)
logger.debug("len(data): %s", len(data))
if data.empty:
del tickers[pair]
logger.info(
'An issue occured while retreiving datas of %s pair, please retry '
'using -l option for live or --refresh-pairs-cached', pair)
return tickers
def generate_dataframe(strategy, tickers, pair) -> pd.DataFrame:
@ -181,211 +57,7 @@ def generate_dataframe(strategy, tickers, pair) -> pd.DataFrame:
return dataframe
def extract_trades_of_period(dataframe, trades) -> pd.DataFrame:
"""
Compare trades and backtested pair DataFrames to get trades performed on backtested period
:return: the DataFrame of a trades of period
"""
trades = trades.loc[trades['open_time'] >= dataframe.iloc[0]['date']]
return trades
def generate_graph(
pair: str,
trades: pd.DataFrame,
data: pd.DataFrame,
indicators1: str,
indicators2: str
) -> tools.make_subplots:
"""
Generate the graph from the data generated by Backtesting or from DB
:param pair: Pair to Display on the graph
:param trades: All trades created
:param data: Dataframe
:indicators1: String Main plot indicators
:indicators2: String Sub plot indicators
:return: None
"""
# Define the graph
fig = tools.make_subplots(
rows=3,
cols=1,
shared_xaxes=True,
row_width=[1, 1, 4],
vertical_spacing=0.0001,
)
fig['layout'].update(title=pair)
fig['layout']['yaxis1'].update(title='Price')
fig['layout']['yaxis2'].update(title='Volume')
fig['layout']['yaxis3'].update(title='Other')
fig['layout']['xaxis']['rangeslider'].update(visible=False)
# Common information
candles = go.Candlestick(
x=data.date,
open=data.open,
high=data.high,
low=data.low,
close=data.close,
name='Price'
)
df_buy = data[data['buy'] == 1]
buys = go.Scattergl(
x=df_buy.date,
y=df_buy.close,
mode='markers',
name='buy',
marker=dict(
symbol='triangle-up-dot',
size=9,
line=dict(width=1),
color='green',
)
)
df_sell = data[data['sell'] == 1]
sells = go.Scattergl(
x=df_sell.date,
y=df_sell.close,
mode='markers',
name='sell',
marker=dict(
symbol='triangle-down-dot',
size=9,
line=dict(width=1),
color='red',
)
)
trade_buys = go.Scattergl(
x=trades["open_time"],
y=trades["open_rate"],
mode='markers',
name='trade_buy',
marker=dict(
symbol='square-open',
size=11,
line=dict(width=2),
color='green'
)
)
trade_sells = go.Scattergl(
x=trades["close_time"],
y=trades["close_rate"],
mode='markers',
name='trade_sell',
marker=dict(
symbol='square-open',
size=11,
line=dict(width=2),
color='red'
)
)
# Row 1
fig.append_trace(candles, 1, 1)
if 'bb_lowerband' in data and 'bb_upperband' in data:
bb_lower = go.Scatter(
x=data.date,
y=data.bb_lowerband,
name='BB lower',
line={'color': 'rgba(255,255,255,0)'},
)
bb_upper = go.Scatter(
x=data.date,
y=data.bb_upperband,
name='BB upper',
fill="tonexty",
fillcolor="rgba(0,176,246,0.2)",
line={'color': 'rgba(255,255,255,0)'},
)
fig.append_trace(bb_lower, 1, 1)
fig.append_trace(bb_upper, 1, 1)
fig = generate_row(fig=fig, row=1, raw_indicators=indicators1, data=data)
fig.append_trace(buys, 1, 1)
fig.append_trace(sells, 1, 1)
fig.append_trace(trade_buys, 1, 1)
fig.append_trace(trade_sells, 1, 1)
# Row 2
volume = go.Bar(
x=data['date'],
y=data['volume'],
name='Volume'
)
fig.append_trace(volume, 2, 1)
# Row 3
fig = generate_row(fig=fig, row=3, raw_indicators=indicators2, data=data)
return fig
def generate_row(fig, row, raw_indicators, data) -> tools.make_subplots:
"""
Generator all the indicator selected by the user for a specific row
"""
for indicator in raw_indicators.split(','):
if indicator in data:
scattergl = go.Scattergl(
x=data['date'],
y=data[indicator],
name=indicator
)
fig.append_trace(scattergl, row, 1)
else:
logger.info(
'Indicator "%s" ignored. Reason: This indicator is not found '
'in your strategy.',
indicator
)
return fig
def plot_parse_args(args: List[str]) -> Namespace:
"""
Parse args passed to the script
:param args: Cli arguments
:return: args: Array with all arguments
"""
arguments = Arguments(args, 'Graph dataframe')
arguments.scripts_options()
arguments.parser.add_argument(
'--indicators1',
help='Set indicators from your strategy you want in the first row of the graph. Separate '
'them with a coma. E.g: ema3,ema5 (default: %(default)s)',
type=str,
default='sma,ema3,ema5',
dest='indicators1',
)
arguments.parser.add_argument(
'--indicators2',
help='Set indicators from your strategy you want in the third row of the graph. Separate '
'them with a coma. E.g: fastd,fastk (default: %(default)s)',
type=str,
default='macd,macdsignal',
dest='indicators2',
)
arguments.parser.add_argument(
'--plot-limit',
help='Specify tick limit for plotting - too high values cause huge files - '
'Default: %(default)s',
dest='plot_limit',
default=750,
type=int,
)
arguments.common_args_parser()
arguments.optimizer_shared_options(arguments.parser)
arguments.backtesting_options(arguments.parser)
return arguments.parse_args()
def analyse_and_plot_pairs(args: Namespace):
def analyse_and_plot_pairs(config: Dict[str, Any]):
"""
From arguments provided in cli:
-Initialise backtest env
@ -396,12 +68,28 @@ def analyse_and_plot_pairs(args: Namespace):
-Generate plot files
:return: None
"""
strategy, exchange, pairs = get_trading_env(args)
exchange = ExchangeResolver(config.get('exchange', {}).get('name'), config).exchange
strategy = StrategyResolver(config).strategy
if "pairs" in config:
pairs = config["pairs"].split(',')
else:
pairs = config["exchange"]["pair_whitelist"]
# Set timerange to use
timerange = Arguments.parse_timerange(args.timerange)
timerange = Arguments.parse_timerange(config["timerange"])
ticker_interval = strategy.ticker_interval
tickers = get_tickers_data(strategy, exchange, pairs, args)
tickers = history.load_data(
datadir=Path(str(config.get("datadir"))),
pairs=pairs,
ticker_interval=config['ticker_interval'],
refresh_pairs=config.get('refresh_pairs', False),
timerange=timerange,
exchange=exchange,
live=config.get("live", False),
)
pair_counter = 0
for pair, data in tickers.items():
pair_counter += 1
@ -409,24 +97,47 @@ def analyse_and_plot_pairs(args: Namespace):
tickers = {}
tickers[pair] = data
dataframe = generate_dataframe(strategy, tickers, pair)
if config["trade_source"] == "DB":
trades = load_trades_from_db(config["db_url"])
elif config["trade_source"] == "file":
trades = load_backtest_data(Path(config["exportfilename"]))
trades = load_trades(args, pair, timerange)
trades = trades.loc[trades['pair'] == pair]
trades = extract_trades_of_period(dataframe, trades)
fig = generate_graph(
pair=pair,
trades=trades,
data=dataframe,
indicators1=args.indicators1,
indicators2=args.indicators2
trades=trades,
indicators1=config["indicators1"].split(","),
indicators2=config["indicators2"].split(",")
)
is_last = (False, True)[pair_counter == len(tickers)]
generate_plot_file(fig, pair, ticker_interval, is_last)
generate_plot_file(fig, pair, ticker_interval)
logger.info('End of ploting process %s plots generated', pair_counter)
def plot_parse_args(args: List[str]) -> Dict[str, Any]:
"""
Parse args passed to the script
:param args: Cli arguments
:return: args: Array with all arguments
"""
arguments = Arguments(args, 'Graph dataframe')
arguments.common_options()
arguments.main_options()
arguments.common_optimize_options()
arguments.backtesting_options()
arguments.common_scripts_options()
arguments.plot_dataframe_options()
parsed_args = arguments.parse_args()
# Load the configuration
config = setup_configuration(parsed_args, RunMode.BACKTEST)
return config
def main(sysargv: List[str]) -> None:
"""
This function will initiate the bot and start the trading loop.

View File

@ -27,10 +27,12 @@ from plotly.offline import plot
from freqtrade.arguments import Arguments
from freqtrade.configuration import Configuration
from freqtrade.data import history
from freqtrade.misc import common_datearray, timeframe_to_seconds
from freqtrade.exchange import timeframe_to_seconds
from freqtrade.misc import common_datearray
from freqtrade.resolvers import StrategyResolver
from freqtrade.state import RunMode
logger = logging.getLogger(__name__)
@ -204,10 +206,11 @@ def plot_parse_args(args: List[str]) -> Namespace:
:return: args: Array with all arguments
"""
arguments = Arguments(args, 'Graph profits')
arguments.scripts_options()
arguments.common_args_parser()
arguments.optimizer_shared_options(arguments.parser)
arguments.backtesting_options(arguments.parser)
arguments.common_options()
arguments.main_options()
arguments.common_optimize_options()
arguments.backtesting_options()
arguments.common_scripts_options()
return arguments.parse_args()

264
scripts/rest_client.py Executable file
View File

@ -0,0 +1,264 @@
#!/usr/bin/env python3
"""
Simple command line client into RPC commands
Can be used as an alternate to Telegram
Should not import anything from freqtrade,
so it can be used as a standalone script.
"""
import argparse
import json
import logging
import inspect
from urllib.parse import urlencode, urlparse, urlunparse
from pathlib import Path
import requests
from requests.exceptions import ConnectionError
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
)
logger = logging.getLogger("ft_rest_client")
class FtRestClient():
def __init__(self, serverurl, username=None, password=None):
self._serverurl = serverurl
self._session = requests.Session()
self._session.auth = (username, password)
def _call(self, method, apipath, params: dict = None, data=None, files=None):
if str(method).upper() not in ('GET', 'POST', 'PUT', 'DELETE'):
raise ValueError('invalid method <{0}>'.format(method))
basepath = f"{self._serverurl}/api/v1/{apipath}"
hd = {"Accept": "application/json",
"Content-Type": "application/json"
}
# Split url
schema, netloc, path, par, query, fragment = urlparse(basepath)
# URLEncode query string
query = urlencode(params) if params else ""
# recombine url
url = urlunparse((schema, netloc, path, par, query, fragment))
try:
resp = self._session.request(method, url, headers=hd, data=json.dumps(data))
# return resp.text
return resp.json()
except ConnectionError:
logger.warning("Connection error")
def _get(self, apipath, params: dict = None):
return self._call("GET", apipath, params=params)
def _post(self, apipath, params: dict = None, data: dict = None):
return self._call("POST", apipath, params=params, data=data)
def start(self):
"""
Start the bot if it's in stopped state.
:return: json object
"""
return self._post("start")
def stop(self):
"""
Stop the bot. Use start to restart
:return: json object
"""
return self._post("stop")
def stopbuy(self):
"""
Stop buying (but handle sells gracefully).
use reload_conf to reset
:return: json object
"""
return self._post("stopbuy")
def reload_conf(self):
"""
Reload configuration
:return: json object
"""
return self._post("reload_conf")
def balance(self):
"""
Get the account balance
:return: json object
"""
return self._get("balance")
def count(self):
"""
Returns the amount of open trades
:return: json object
"""
return self._get("count")
def daily(self, days=None):
"""
Returns the amount of open trades
:return: json object
"""
return self._get("daily", params={"timescale": days} if days else None)
def edge(self):
"""
Returns information about edge
:return: json object
"""
return self._get("edge")
def profit(self):
"""
Returns the profit summary
:return: json object
"""
return self._get("profit")
def performance(self):
"""
Returns the performance of the different coins
:return: json object
"""
return self._get("performance")
def status(self):
"""
Get the status of open trades
:return: json object
"""
return self._get("status")
def version(self):
"""
Returns the version of the bot
:return: json object containing the version
"""
return self._get("version")
def whitelist(self):
"""
Show the current whitelist
:return: json object
"""
return self._get("whitelist")
def blacklist(self, *args):
"""
Show the current blacklist
:param add: List of coins to add (example: "BNB/BTC")
:return: json object
"""
if not args:
return self._get("blacklist")
else:
return self._post("blacklist", data={"blacklist": args})
def forcebuy(self, pair, price=None):
"""
Buy an asset
:param pair: Pair to buy (ETH/BTC)
:param price: Optional - price to buy
:return: json object of the trade
"""
data = {"pair": pair,
"price": price
}
return self._post("forcebuy", data=data)
def forcesell(self, tradeid):
"""
Force-sell a trade
:param tradeid: Id of the trade (can be received via status command)
:return: json object
"""
return self._post("forcesell", data={"tradeid": tradeid})
def add_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("command",
help="Positional argument defining the command to execute.")
parser.add_argument('--show',
help='Show possible methods with this client',
dest='show',
action='store_true',
default=False
)
parser.add_argument('-c', '--config',
help='Specify configuration file (default: %(default)s). ',
dest='config',
type=str,
metavar='PATH',
default='config.json'
)
parser.add_argument("command_arguments",
help="Positional arguments for the parameters for [command]",
nargs="*",
default=[]
)
args = parser.parse_args()
return vars(args)
def load_config(configfile):
file = Path(configfile)
if file.is_file():
with file.open("r") as f:
config = json.load(f)
return config
return {}
def print_commands():
# Print dynamic help for the different commands using the commands doc-strings
client = FtRestClient(None)
print("Possible commands:")
for x, y in inspect.getmembers(client):
if not x.startswith('_'):
print(f"{x} {getattr(client, x).__doc__}")
def main(args):
if args.get("help"):
print_commands()
config = load_config(args["config"])
url = config.get("api_server", {}).get("server_url", "127.0.0.1")
port = config.get("api_server", {}).get("listen_port", "8080")
username = config.get("api_server", {}).get("username")
password = config.get("api_server", {}).get("password")
server_url = f"http://{url}:{port}"
client = FtRestClient(server_url, username, password)
m = [x for x, y in inspect.getmembers(client) if not x.startswith('_')]
command = args["command"]
if command not in m:
logger.error(f"Command {command} not defined")
print_commands()
return
print(getattr(client, command)(*args["command_arguments"]))
if __name__ == "__main__":
args = add_arguments()
main(args)

Some files were not shown because too many files have changed in this diff Show More