mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-12 19:23:55 +00:00
Bump lightgbm from 3.3.5 to 4.0.0 (#8923)
* Bump lightgbm from 3.3.5 to 4.0.0 Bumps [lightgbm](https://github.com/microsoft/LightGBM) from 3.3.5 to 4.0.0. - [Release notes](https://github.com/microsoft/LightGBM/releases) - [Commits](https://github.com/microsoft/LightGBM/compare/v3.3.5...v4.0.0) --- updated-dependencies: - dependency-name: lightgbm dependency-type: direct:production update-type: version-update:semver-major ... Signed-off-by: dependabot[bot] <support@github.com> * fix: ensure freqai lightgbm variants conform to v4.0.0 * remove random file --------- Signed-off-by: dependabot[bot] <support@github.com> Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> Co-authored-by: robcaulk <rob.caulk@gmail.com>
This commit is contained in:
parent
14d2e3e88e
commit
27a36bfb40
|
@ -32,8 +32,8 @@ class LightGBMClassifier(BaseClassifierModel):
|
||||||
eval_set = None
|
eval_set = None
|
||||||
test_weights = None
|
test_weights = None
|
||||||
else:
|
else:
|
||||||
eval_set = (data_dictionary["test_features"].to_numpy(),
|
eval_set = [(data_dictionary["test_features"].to_numpy(),
|
||||||
data_dictionary["test_labels"].to_numpy()[:, 0])
|
data_dictionary["test_labels"].to_numpy()[:, 0])]
|
||||||
test_weights = data_dictionary["test_weights"]
|
test_weights = data_dictionary["test_weights"]
|
||||||
X = data_dictionary["train_features"].to_numpy()
|
X = data_dictionary["train_features"].to_numpy()
|
||||||
y = data_dictionary["train_labels"].to_numpy()[:, 0]
|
y = data_dictionary["train_labels"].to_numpy()[:, 0]
|
||||||
|
@ -42,7 +42,6 @@ class LightGBMClassifier(BaseClassifierModel):
|
||||||
init_model = self.get_init_model(dk.pair)
|
init_model = self.get_init_model(dk.pair)
|
||||||
|
|
||||||
model = LGBMClassifier(**self.model_training_parameters)
|
model = LGBMClassifier(**self.model_training_parameters)
|
||||||
|
|
||||||
model.fit(X=X, y=y, eval_set=eval_set, sample_weight=train_weights,
|
model.fit(X=X, y=y, eval_set=eval_set, sample_weight=train_weights,
|
||||||
eval_sample_weight=[test_weights], init_model=init_model)
|
eval_sample_weight=[test_weights], init_model=init_model)
|
||||||
|
|
||||||
|
|
|
@ -32,7 +32,7 @@ class LightGBMRegressor(BaseRegressionModel):
|
||||||
eval_set = None
|
eval_set = None
|
||||||
eval_weights = None
|
eval_weights = None
|
||||||
else:
|
else:
|
||||||
eval_set = (data_dictionary["test_features"], data_dictionary["test_labels"])
|
eval_set = [(data_dictionary["test_features"], data_dictionary["test_labels"])]
|
||||||
eval_weights = data_dictionary["test_weights"]
|
eval_weights = data_dictionary["test_weights"]
|
||||||
X = data_dictionary["train_features"]
|
X = data_dictionary["train_features"]
|
||||||
y = data_dictionary["train_labels"]
|
y = data_dictionary["train_labels"]
|
||||||
|
|
|
@ -42,10 +42,10 @@ class LightGBMRegressorMultiTarget(BaseRegressionModel):
|
||||||
eval_weights = [data_dictionary["test_weights"]]
|
eval_weights = [data_dictionary["test_weights"]]
|
||||||
eval_sets = [(None, None)] * data_dictionary['test_labels'].shape[1] # type: ignore
|
eval_sets = [(None, None)] * data_dictionary['test_labels'].shape[1] # type: ignore
|
||||||
for i in range(data_dictionary['test_labels'].shape[1]):
|
for i in range(data_dictionary['test_labels'].shape[1]):
|
||||||
eval_sets[i] = ( # type: ignore
|
eval_sets[i] = [( # type: ignore
|
||||||
data_dictionary["test_features"],
|
data_dictionary["test_features"],
|
||||||
data_dictionary["test_labels"].iloc[:, i]
|
data_dictionary["test_labels"].iloc[:, i]
|
||||||
)
|
)]
|
||||||
|
|
||||||
init_model = self.get_init_model(dk.pair)
|
init_model = self.get_init_model(dk.pair)
|
||||||
if init_model:
|
if init_model:
|
||||||
|
|
|
@ -6,7 +6,7 @@
|
||||||
scikit-learn==1.1.3
|
scikit-learn==1.1.3
|
||||||
joblib==1.3.1
|
joblib==1.3.1
|
||||||
catboost==1.2; 'arm' not in platform_machine
|
catboost==1.2; 'arm' not in platform_machine
|
||||||
lightgbm==3.3.5
|
lightgbm==4.0.0
|
||||||
xgboost==1.7.6
|
xgboost==1.7.6
|
||||||
tensorboard==2.13.0
|
tensorboard==2.13.0
|
||||||
datasieve==0.1.7
|
datasieve==0.1.7
|
||||||
|
|
Loading…
Reference in New Issue
Block a user