mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 18:23:55 +00:00
Merge pull request #2108 from jraviotta/nbdocs
Added jupyter notebook example and doc edits
This commit is contained in:
commit
29619ccf1c
4
.gitignore
vendored
4
.gitignore
vendored
|
@ -81,7 +81,6 @@ target/
|
||||||
|
|
||||||
# Jupyter Notebook
|
# Jupyter Notebook
|
||||||
.ipynb_checkpoints
|
.ipynb_checkpoints
|
||||||
*.ipynb
|
|
||||||
|
|
||||||
# pyenv
|
# pyenv
|
||||||
.python-version
|
.python-version
|
||||||
|
@ -93,3 +92,6 @@ target/
|
||||||
|
|
||||||
.pytest_cache/
|
.pytest_cache/
|
||||||
.mypy_cache/
|
.mypy_cache/
|
||||||
|
|
||||||
|
#exceptions
|
||||||
|
!user_data/noteboks/*example.ipynb
|
||||||
|
|
|
@ -1,164 +1,114 @@
|
||||||
# Analyzing bot data
|
# Analyzing bot data
|
||||||
|
|
||||||
After performing backtests, or after running the bot for some time, it will be interesting to analyze the results your bot generated.
|
You can analyze the results of backtests and trading history easily using Jupyter notebooks. A sample notebook is located at `user_data/notebooks/analysis_example.ipynb`. For usage instructions, see [jupyter.org](https://jupyter.org/documentation).
|
||||||
|
|
||||||
A good way for this is using Jupyter (notebook or lab) - which provides an interactive environment to analyze the data.
|
*Pro tip - Don't forget to start a jupyter notbook server from within your conda or venv environment or use [nb_conda_kernels](https://github.com/Anaconda-Platform/nb_conda_kernels)*
|
||||||
|
|
||||||
The following helpers will help you loading the data into Pandas DataFrames, and may also give you some starting points in analyzing the results.
|
## Example snippets
|
||||||
|
|
||||||
## Strategy development problem analysis
|
### Load backtest results into a pandas dataframe
|
||||||
|
|
||||||
Debugging a strategy (are there no buy signals, ...) can be very time-consuming.
|
|
||||||
FreqTrade tries to help you by exposing a few helper-functions, which can be very handy.
|
|
||||||
|
|
||||||
It's recommended using Juptyer Notebooks for analysis, since it offers a dynamic way to rerun certain parts of the code.
|
|
||||||
|
|
||||||
The following is a full code-snippet, which will be explained by both comments, and step by step below.
|
|
||||||
|
|
||||||
```python
|
```python
|
||||||
# Some necessary imports
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
from freqtrade.data.history import load_pair_history
|
|
||||||
from freqtrade.resolvers import StrategyResolver
|
|
||||||
# Define some constants
|
|
||||||
ticker_interval = "5m"
|
|
||||||
|
|
||||||
# Name of the strategy class
|
|
||||||
strategyname = 'Awesomestrategy'
|
|
||||||
# Location of the strategy
|
|
||||||
strategy_location = '../xmatt/strategies'
|
|
||||||
# Location of the data
|
|
||||||
data_location = '../freqtrade/user_data/data/binance/'
|
|
||||||
# Only use one pair here
|
|
||||||
pair = "XRP_ETH"
|
|
||||||
|
|
||||||
### End constants
|
|
||||||
|
|
||||||
# Load data
|
|
||||||
bt_data = load_pair_history(datadir=Path(data_location),
|
|
||||||
ticker_interval = ticker_interval,
|
|
||||||
pair=pair)
|
|
||||||
print(len(bt_data))
|
|
||||||
|
|
||||||
### Start strategy reload
|
|
||||||
# Load strategy - best done in a new cell
|
|
||||||
# Rerun each time the strategy-file is changed.
|
|
||||||
strategy = StrategyResolver({'strategy': strategyname,
|
|
||||||
'user_data_dir': Path.cwd(),
|
|
||||||
'strategy_path': location}).strategy
|
|
||||||
|
|
||||||
# Run strategy (just like in backtesting)
|
|
||||||
df = strategy.analyze_ticker(bt_data, {'pair': pair})
|
|
||||||
print(f"Generated {df['buy'].sum()} buy signals")
|
|
||||||
|
|
||||||
# Reindex data to be "nicer" and show data
|
|
||||||
data = df.set_index('date', drop=True)
|
|
||||||
data.tail()
|
|
||||||
|
|
||||||
```
|
|
||||||
|
|
||||||
### Explanation
|
|
||||||
|
|
||||||
#### Imports and constant definition
|
|
||||||
|
|
||||||
``` python
|
|
||||||
# Some necessary imports
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
from freqtrade.data.history import load_pair_history
|
|
||||||
from freqtrade.resolvers import StrategyResolver
|
|
||||||
# Define some constants
|
|
||||||
ticker_interval = "5m"
|
|
||||||
|
|
||||||
# Name of the strategy class
|
|
||||||
strategyname = 'Awesomestrategy'
|
|
||||||
# Location of the strategy
|
|
||||||
strategy_location = 'user_data/strategies'
|
|
||||||
# Location of the data
|
|
||||||
data_location = 'user_data/data/binance'
|
|
||||||
# Only use one pair here
|
|
||||||
pair = "XRP_ETH"
|
|
||||||
```
|
|
||||||
|
|
||||||
This first section imports necessary modules, and defines some constants you'll probably need to adjust for your case.
|
|
||||||
|
|
||||||
#### Load candles
|
|
||||||
|
|
||||||
``` python
|
|
||||||
# Load data
|
|
||||||
bt_data = load_pair_history(datadir=Path(data_location),
|
|
||||||
ticker_interval = ticker_interval,
|
|
||||||
pair=pair)
|
|
||||||
print(len(bt_data))
|
|
||||||
```
|
|
||||||
|
|
||||||
This second section loads the historic data and prints the amount of candles in the DataFrame.
|
|
||||||
You can also inspect this dataframe by using `bt_data.head()` or `bt_data.tail()`.
|
|
||||||
|
|
||||||
#### Run strategy and analyze results
|
|
||||||
|
|
||||||
Now, it's time to load and run your strategy.
|
|
||||||
For this, I recommend using a new cell in your notebook, since you'll want to repeat this until you're satisfied with your strategy.
|
|
||||||
|
|
||||||
``` python
|
|
||||||
# Load strategy - best done in a new cell
|
|
||||||
# Needs to be ran each time the strategy-file is changed.
|
|
||||||
strategy = StrategyResolver({'strategy': strategyname,
|
|
||||||
'user_data_dir': Path.cwd(),
|
|
||||||
'strategy_path': location}).strategy
|
|
||||||
|
|
||||||
# Run strategy (just like in backtesting)
|
|
||||||
df = strategy.analyze_ticker(bt_data, {'pair': pair})
|
|
||||||
print(f"Generated {df['buy'].sum()} buy signals")
|
|
||||||
|
|
||||||
# Reindex data to be "nicer" and show data
|
|
||||||
data = df.set_index('date', drop=True)
|
|
||||||
data.tail()
|
|
||||||
```
|
|
||||||
|
|
||||||
The code snippet loads and analyzes the strategy, calculates and prints the number of buy signals.
|
|
||||||
|
|
||||||
The last 2 lines serve to analyze the dataframe in detail.
|
|
||||||
This can be important if your strategy did not generate any buy signals.
|
|
||||||
Note that using `data.head()` would also work, however this is misleading since most indicators have some "startup" time at the start of a backtested dataframe.
|
|
||||||
|
|
||||||
There can be many things wrong, some signs to look for are:
|
|
||||||
|
|
||||||
* Columns with NaN values at the end of the dataframe
|
|
||||||
* Columns used in `crossed*()` functions with completely different units
|
|
||||||
|
|
||||||
## Backtesting
|
|
||||||
|
|
||||||
To analyze your backtest results, you can [export the trades](#exporting-trades-to-file).
|
|
||||||
You can then load the trades to perform further analysis.
|
|
||||||
|
|
||||||
Freqtrade provides the `load_backtest_data()` helper function to easily load the backtest results, which takes the path to the the backtest-results file as parameter.
|
|
||||||
|
|
||||||
``` python
|
|
||||||
from freqtrade.data.btanalysis import load_backtest_data
|
from freqtrade.data.btanalysis import load_backtest_data
|
||||||
df = load_backtest_data("user_data/backtest-result.json")
|
# Load backtest results
|
||||||
|
df = load_backtest_data("user_data/backtest_data/backtest-result.json")
|
||||||
|
|
||||||
# Show value-counts per pair
|
# Show value-counts per pair
|
||||||
df.groupby("pair")["sell_reason"].value_counts()
|
df.groupby("pair")["sell_reason"].value_counts()
|
||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
This will allow you to drill deeper into your backtest results, and perform analysis which otherwise would make the regular backtest-output very difficult to digest due to information overload.
|
This will allow you to drill deeper into your backtest results, and perform analysis which otherwise would make the regular backtest-output very difficult to digest due to information overload.
|
||||||
|
|
||||||
If you have some ideas for interesting / helpful backtest data analysis ideas, please submit a Pull Request so the community can benefit from it.
|
### Load live trading results into a pandas dataframe
|
||||||
|
|
||||||
## Live data
|
|
||||||
|
|
||||||
To analyze the trades your bot generated, you can load them to a DataFrame as follows:
|
|
||||||
|
|
||||||
``` python
|
``` python
|
||||||
from freqtrade.data.btanalysis import load_trades_from_db
|
from freqtrade.data.btanalysis import load_trades_from_db
|
||||||
|
|
||||||
|
# Fetch trades from database
|
||||||
df = load_trades_from_db("sqlite:///tradesv3.sqlite")
|
df = load_trades_from_db("sqlite:///tradesv3.sqlite")
|
||||||
|
|
||||||
|
# Display results
|
||||||
df.groupby("pair")["sell_reason"].value_counts()
|
df.groupby("pair")["sell_reason"].value_counts()
|
||||||
|
```
|
||||||
|
|
||||||
|
## Strategy debugging example
|
||||||
|
|
||||||
|
Debugging a strategy can be time-consuming. FreqTrade offers helper functions to visualize raw data.
|
||||||
|
|
||||||
|
### Import requirements and define variables used in analyses
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Imports
|
||||||
|
from pathlib import Path
|
||||||
|
import os
|
||||||
|
from freqtrade.data.history import load_pair_history
|
||||||
|
from freqtrade.resolvers import StrategyResolver
|
||||||
|
|
||||||
|
# You can override strategy settings as demonstrated below.
|
||||||
|
# Customize these according to your needs.
|
||||||
|
|
||||||
|
# Define some constants
|
||||||
|
ticker_interval = "5m"
|
||||||
|
# Name of the strategy class
|
||||||
|
strategy_name = 'AwesomeStrategy'
|
||||||
|
# Path to user data
|
||||||
|
user_data_dir = 'user_data'
|
||||||
|
# Location of the strategy
|
||||||
|
strategy_location = Path(user_data_dir, 'strategies')
|
||||||
|
# Location of the data
|
||||||
|
data_location = Path(user_data_dir, 'data', 'binance')
|
||||||
|
# Pair to analyze
|
||||||
|
# Only use one pair here
|
||||||
|
pair = "BTC_USDT"
|
||||||
|
```
|
||||||
|
|
||||||
|
### Load exchange data
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Load data using values set above
|
||||||
|
bt_data = load_pair_history(datadir=Path(data_location),
|
||||||
|
ticker_interval=ticker_interval,
|
||||||
|
pair=pair)
|
||||||
|
|
||||||
|
# Confirm success
|
||||||
|
print(f"Loaded {len(bt_data)} rows of data for {pair} from {data_location}")
|
||||||
|
```
|
||||||
|
|
||||||
|
### Load and run strategy
|
||||||
|
|
||||||
|
* Rerun each time the strategy file is changed
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Load strategy using values set above
|
||||||
|
strategy = StrategyResolver({'strategy': strategy_name,
|
||||||
|
'user_data_dir': user_data_dir,
|
||||||
|
'strategy_path': strategy_location}).strategy
|
||||||
|
|
||||||
|
# Generate buy/sell signals using strategy
|
||||||
|
df = strategy.analyze_ticker(bt_data, {'pair': pair})
|
||||||
|
```
|
||||||
|
|
||||||
|
### Display the trade details
|
||||||
|
|
||||||
|
* Note that using `data.head()` would also work, however most indicators have some "startup" data at the top of the dataframe.
|
||||||
|
|
||||||
|
#### Some possible problems
|
||||||
|
|
||||||
|
* Columns with NaN values at the end of the dataframe
|
||||||
|
* Columns used in `crossed*()` functions with completely different units
|
||||||
|
|
||||||
|
#### Comparison with full backtest
|
||||||
|
|
||||||
|
having 200 buy signals as output for one pair from `analyze_ticker()` does not necessarily mean that 200 trades will be made during backtesting.
|
||||||
|
|
||||||
|
Assuming you use only one condition such as, `df['rsi'] < 30` as buy condition, this will generate multiple "buy" signals for each pair in sequence (until rsi returns > 29).
|
||||||
|
The bot will only buy on the first of these signals (and also only if a trade-slot ("max_open_trades") is still available), or on one of the middle signals, as soon as a "slot" becomes available.
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Report results
|
||||||
|
print(f"Generated {df['buy'].sum()} buy signals")
|
||||||
|
data = df.set_index('date', drop=True)
|
||||||
|
data.tail()
|
||||||
```
|
```
|
||||||
|
|
||||||
Feel free to submit an issue or Pull Request enhancing this document if you would like to share ideas on how to best analyze the data.
|
Feel free to submit an issue or Pull Request enhancing this document if you would like to share ideas on how to best analyze the data.
|
||||||
|
|
|
@ -37,6 +37,7 @@ dependencies:
|
||||||
- coveralls
|
- coveralls
|
||||||
- mypy
|
- mypy
|
||||||
# Useful for jupyter
|
# Useful for jupyter
|
||||||
|
- jupyter
|
||||||
- ipykernel
|
- ipykernel
|
||||||
- isort
|
- isort
|
||||||
- yapf
|
- yapf
|
||||||
|
|
10
setup.py
10
setup.py
|
@ -25,7 +25,13 @@ develop = [
|
||||||
'pytest-random-order',
|
'pytest-random-order',
|
||||||
]
|
]
|
||||||
|
|
||||||
all_extra = api + plot + develop
|
jupyter = [
|
||||||
|
'jupyter',
|
||||||
|
'nbstripout',
|
||||||
|
'ipykernel',
|
||||||
|
]
|
||||||
|
|
||||||
|
all_extra = api + plot + develop + jupyter
|
||||||
|
|
||||||
setup(name='freqtrade',
|
setup(name='freqtrade',
|
||||||
version=__version__,
|
version=__version__,
|
||||||
|
@ -68,6 +74,8 @@ setup(name='freqtrade',
|
||||||
'dev': all_extra,
|
'dev': all_extra,
|
||||||
'plot': plot,
|
'plot': plot,
|
||||||
'all': all_extra,
|
'all': all_extra,
|
||||||
|
'jupyter': jupyter,
|
||||||
|
|
||||||
},
|
},
|
||||||
include_package_data=True,
|
include_package_data=True,
|
||||||
zip_safe=False,
|
zip_safe=False,
|
||||||
|
|
0
user_data/notebooks/.gitkeep
Normal file
0
user_data/notebooks/.gitkeep
Normal file
243
user_data/notebooks/analysis_example.ipynb
Normal file
243
user_data/notebooks/analysis_example.ipynb
Normal file
|
@ -0,0 +1,243 @@
|
||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Analyzing bot data\n",
|
||||||
|
"\n",
|
||||||
|
"You can analyze the results of backtests and trading history easily using Jupyter notebooks. \n",
|
||||||
|
"**Copy this file so your changes don't get clobbered with the next freqtrade update!** \n",
|
||||||
|
"For usage instructions, see [jupyter.org](https://jupyter.org/documentation). \n",
|
||||||
|
"*Pro tip - Don't forget to start a jupyter notbook server from within your conda or venv environment or use [nb_conda_kernels](https://github.com/Anaconda-Platform/nb_conda_kernels)*\n",
|
||||||
|
"\n",
|
||||||
|
"\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# Imports\n",
|
||||||
|
"from pathlib import Path\n",
|
||||||
|
"import os\n",
|
||||||
|
"from freqtrade.data.history import load_pair_history\n",
|
||||||
|
"from freqtrade.resolvers import StrategyResolver\n",
|
||||||
|
"from freqtrade.data.btanalysis import load_backtest_data\n",
|
||||||
|
"from freqtrade.data.btanalysis import load_trades_from_db"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# Change directory\n",
|
||||||
|
"# Define all paths relative to the project root shown in the cell output\n",
|
||||||
|
"try:\n",
|
||||||
|
" os.chdir(Path(Path.cwd(), '../..'))\n",
|
||||||
|
" print(Path.cwd())\n",
|
||||||
|
"except:\n",
|
||||||
|
" pass"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Example snippets"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Load backtest results into a pandas dataframe"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# Load backtest results\n",
|
||||||
|
"df = load_backtest_data(\"user_data/backtest_data/backtest-result.json\")\n",
|
||||||
|
"\n",
|
||||||
|
"# Show value-counts per pair\n",
|
||||||
|
"df.groupby(\"pair\")[\"sell_reason\"].value_counts()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Load live trading results into a pandas dataframe"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# Fetch trades from database\n",
|
||||||
|
"df = load_trades_from_db(\"sqlite:///tradesv3.sqlite\")\n",
|
||||||
|
"\n",
|
||||||
|
"# Display results\n",
|
||||||
|
"df.groupby(\"pair\")[\"sell_reason\"].value_counts()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Strategy debugging example\n",
|
||||||
|
"\n",
|
||||||
|
"Debugging a strategy can be time-consuming. FreqTrade offers helper functions to visualize raw data."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Import requirements and define variables used in analyses"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# Define some constants\n",
|
||||||
|
"ticker_interval = \"5m\"\n",
|
||||||
|
"# Name of the strategy class\n",
|
||||||
|
"strategy_name = 'AwesomeStrategy'\n",
|
||||||
|
"# Path to user data\n",
|
||||||
|
"user_data_dir = 'user_data'\n",
|
||||||
|
"# Location of the strategy\n",
|
||||||
|
"strategy_location = Path(user_data_dir, 'strategies')\n",
|
||||||
|
"# Location of the data\n",
|
||||||
|
"data_location = Path(user_data_dir, 'data', 'binance')\n",
|
||||||
|
"# Pair to analyze \n",
|
||||||
|
"# Only use one pair here\n",
|
||||||
|
"pair = \"BTC_USDT\""
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Load exchange data"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# Load data using values set above\n",
|
||||||
|
"bt_data = load_pair_history(datadir=Path(data_location),\n",
|
||||||
|
" ticker_interval=ticker_interval,\n",
|
||||||
|
" pair=pair)\n",
|
||||||
|
"\n",
|
||||||
|
"# Confirm success\n",
|
||||||
|
"print(\"Loaded \" + str(len(bt_data)) + f\" rows of data for {pair} from {data_location}\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Load and run strategy\n",
|
||||||
|
"* Rerun each time the strategy file is changed"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# Load strategy using values set above\n",
|
||||||
|
"strategy = StrategyResolver({'strategy': strategy_name,\n",
|
||||||
|
" 'user_data_dir': user_data_dir,\n",
|
||||||
|
" 'strategy_path': strategy_location}).strategy\n",
|
||||||
|
"\n",
|
||||||
|
"# Generate buy/sell signals using strategy\n",
|
||||||
|
"df = strategy.analyze_ticker(bt_data, {'pair': pair})"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Display the trade details\n",
|
||||||
|
"* Note that using `data.head()` would also work, however most indicators have some \"startup\" data at the top of the dataframe.\n",
|
||||||
|
"\n",
|
||||||
|
"#### Some possible problems\n",
|
||||||
|
"\n",
|
||||||
|
"* Columns with NaN values at the end of the dataframe\n",
|
||||||
|
"* Columns used in `crossed*()` functions with completely different units\n",
|
||||||
|
"\n",
|
||||||
|
"#### Comparison with full backtest\n",
|
||||||
|
"\n",
|
||||||
|
"having 200 buy signals as output for one pair from `analyze_ticker()` does not necessarily mean that 200 trades will be made during backtesting.\n",
|
||||||
|
"\n",
|
||||||
|
"Assuming you use only one condition such as, `df['rsi'] < 30` as buy condition, this will generate multiple \"buy\" signals for each pair in sequence (until rsi returns > 29).\n",
|
||||||
|
"The bot will only buy on the first of these signals (and also only if a trade-slot (\"max_open_trades\") is still available), or on one of the middle signals, as soon as a \"slot\" becomes available.\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# Report results\n",
|
||||||
|
"print(f\"Generated {df['buy'].sum()} buy signals\")\n",
|
||||||
|
"data = df.set_index('date', drop=True)\n",
|
||||||
|
"data.tail()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Feel free to submit an issue or Pull Request enhancing this document if you would like to share ideas on how to best analyze the data."
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"file_extension": ".py",
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.7.3"
|
||||||
|
},
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"npconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 2
|
||||||
|
}
|
Loading…
Reference in New Issue
Block a user