Fix duplicated data loading and timerange for populate_features

This commit is contained in:
Thomas Joußen 2023-12-15 10:47:56 +00:00
parent 0333abcbdc
commit 2d6a49013f
4 changed files with 71 additions and 4 deletions

View File

@ -68,7 +68,7 @@ Backtesting mode requires [downloading the necessary data](#downloading-data-to-
This way, you can return to using any model you wish by simply specifying the `identifier`.
!!! Note
Backtesting calls `set_freqai_targets()` one time for each backtest window (where the number of windows is the full backtest timerange divided by the `backtest_period_days` parameter). Doing this means that the targets simulate dry/live behavior without look ahead bias. However, the definition of the features in `feature_engineering_*()` is performed once on the entire backtest timerange. This means that you should be sure that features do look-ahead into the future.
Backtesting calls `set_freqai_targets()` one time for each backtest window (where the number of windows is the full backtest timerange divided by the `backtest_period_days` parameter). Doing this means that the targets simulate dry/live behavior without look ahead bias. However, the definition of the features in `feature_engineering_*()` is performed once on the entire training timerange. This means that you should be sure that features do not look-ahead into the future.
More details about look-ahead bias can be found in [Common Mistakes](strategy-customization.md#common-mistakes-when-developing-strategies).
---

View File

@ -311,11 +311,14 @@ class DataProvider:
timerange = TimeRange.parse_timerange(None if self._config.get(
'timerange') is None else str(self._config.get('timerange')))
# It is not necessary to add the training candles, as they
# were already added at the beginning of the backtest.
startup_candles = self.get_required_startup(str(timeframe), False)
startup_candles = self.get_required_startup(str(timeframe))
tf_seconds = timeframe_to_seconds(str(timeframe))
timerange.subtract_start(tf_seconds * startup_candles)
logger.info(f"Loading data for {pair} {timeframe} "
f"from {timerange.start_fmt} "
f"to {timerange.stop_fmt}")
self.__cached_pairs_backtesting[saved_pair] = load_pair_history(
pair=pair,
timeframe=timeframe,

View File

@ -709,6 +709,8 @@ class FreqaiDataKitchen:
pair, tf, strategy, corr_dataframes, base_dataframes, is_corr_pairs)
informative_copy = informative_df.copy()
logger.debug(f"Populating features for {pair} {tf}")
for t in self.freqai_config["feature_parameters"]["indicator_periods_candles"]:
df_features = strategy.feature_engineering_expand_all(
informative_copy.copy(), t, metadata=metadata)
@ -788,6 +790,7 @@ class FreqaiDataKitchen:
if not prediction_dataframe.empty:
dataframe = prediction_dataframe.copy()
base_dataframes[self.config["timeframe"]] = dataframe.copy()
else:
dataframe = base_dataframes[self.config["timeframe"]].copy()

View File

@ -3,6 +3,7 @@ from datetime import datetime, timedelta, timezone
from pathlib import Path
from unittest.mock import MagicMock
import pandas as pd
import pytest
from freqtrade.configuration import TimeRange
@ -135,3 +136,63 @@ def test_get_full_model_path(mocker, freqai_conf, model):
model_path = freqai.dk.get_full_models_path(freqai_conf)
assert model_path.is_dir() is True
def test_get_pair_data_for_features_with_prealoaded_data(mocker, freqai_conf):
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange)
strategy.freqai_info = freqai_conf.get("freqai", {})
freqai = strategy.freqai
freqai.dk = FreqaiDataKitchen(freqai_conf)
timerange = TimeRange.parse_timerange("20180110-20180130")
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
_, base_df = freqai.dd.get_base_and_corr_dataframes(timerange, "LTC/BTC", freqai.dk)
df = freqai.dk.get_pair_data_for_features("LTC/BTC", "5m", strategy, base_dataframes=base_df)
assert df is base_df["5m"]
assert not df.empty
def test_get_pair_data_for_features_without_preloaded_data(mocker, freqai_conf):
freqai_conf.update({"timerange": "20180115-20180130"})
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange)
strategy.freqai_info = freqai_conf.get("freqai", {})
freqai = strategy.freqai
freqai.dk = FreqaiDataKitchen(freqai_conf)
timerange = TimeRange.parse_timerange("20180110-20180130")
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
base_df = {'5m': pd.DataFrame()}
df = freqai.dk.get_pair_data_for_features("LTC/BTC", "5m", strategy, base_dataframes=base_df)
assert df is not base_df["5m"]
assert not df.empty
assert df.iloc[0]['date'].strftime("%Y-%m-%d %H:%M:%S") == "2018-01-11 23:00:00"
assert df.iloc[-1]['date'].strftime("%Y-%m-%d %H:%M:%S") == "2018-01-30 00:00:00"
def test_populate_features(mocker, freqai_conf):
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange)
strategy.freqai_info = freqai_conf.get("freqai", {})
freqai = strategy.freqai
freqai.dk = FreqaiDataKitchen(freqai_conf)
timerange = TimeRange.parse_timerange("20180115-20180130")
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
corr_df, base_df = freqai.dd.get_base_and_corr_dataframes(timerange, "LTC/BTC", freqai.dk)
mocker.patch.object(strategy, 'feature_engineering_expand_all', return_value=base_df["5m"])
df = freqai.dk.populate_features(base_df["5m"], "LTC/BTC", strategy,
base_dataframes=base_df, corr_dataframes=corr_df)
strategy.feature_engineering_expand_all.assert_called_once()
pd.testing.assert_frame_equal(base_df["5m"],
strategy.feature_engineering_expand_all.call_args[0][0])
assert df.iloc[0]['date'].strftime("%Y-%m-%d %H:%M:%S") == "2018-01-15 00:00:00"