feat: add SKLearnRandomForestClassifier

This commit is contained in:
robcaulk 2023-12-18 12:56:04 +01:00
parent 99359a7f85
commit 2f2467256c
3 changed files with 85 additions and 0 deletions

View File

@ -0,0 +1,82 @@
import logging
from typing import Any, Dict, Tuple
import numpy as np
import numpy.typing as npt
from pandas import DataFrame
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import LabelEncoder
from freqtrade.freqai.base_models.BaseClassifierModel import BaseClassifierModel
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
logger = logging.getLogger(__name__)
class SKLearnRandomForestClassifier(BaseClassifierModel):
"""
User created prediction model. The class inherits IFreqaiModel, which
means it has full access to all Frequency AI functionality. Typically,
users would use this to override the common `fit()`, `train()`, or
`predict()` methods to add their custom data handling tools or change
various aspects of the training that cannot be configured via the
top level config.json file.
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary holding all data for train, test,
labels, weights
:param dk: The datakitchen object for the current coin/model
"""
X = data_dictionary["train_features"].to_numpy()
y = data_dictionary["train_labels"].to_numpy()[:, 0]
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) == 0:
eval_set = None
else:
test_features = data_dictionary["test_features"].to_numpy()
test_labels = data_dictionary["test_labels"].to_numpy()[:, 0]
eval_set = (test_features, test_labels)
if self.freqai_info.get("continual_learning", False):
logger.warning("Continual learning is not supported for "
"SKLearnRandomForestClassifier, ignoring.")
train_weights = data_dictionary["train_weights"]
model = RandomForestClassifier(**self.model_training_parameters)
model.fit(X=X, y=y, sample_weight=train_weights)
if eval_set:
logger.info("Score: %s", model.score(eval_set[0], eval_set[1]))
return model
def predict(
self, unfiltered_df: DataFrame, dk: FreqaiDataKitchen, **kwargs
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
"""
Filter the prediction features data and predict with it.
:param unfiltered_df: Full dataframe for the current backtest period.
:return:
:pred_df: dataframe containing the predictions
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
data (NaNs) or felt uncertain about data (PCA and DI index)
"""
(pred_df, dk.do_predict) = super().predict(unfiltered_df, dk, **kwargs)
le = LabelEncoder()
label = dk.label_list[0]
labels_before = list(dk.data['labels_std'].keys())
labels_after = le.fit_transform(labels_before).tolist()
pred_df[label] = le.inverse_transform(pred_df[label])
pred_df = pred_df.rename(
columns={labels_after[i]: labels_before[i] for i in range(len(labels_before))})
return (pred_df, dk.do_predict)

View File

@ -176,6 +176,7 @@ def test_extract_data_and_train_model_MultiTargets(mocker, freqai_conf, model, s
'CatboostClassifier', 'CatboostClassifier',
'XGBoostClassifier', 'XGBoostClassifier',
'XGBoostRFClassifier', 'XGBoostRFClassifier',
'SKLearnRandomForestClassifier',
'PyTorchMLPClassifier', 'PyTorchMLPClassifier',
]) ])
def test_extract_data_and_train_model_Classifiers(mocker, freqai_conf, model): def test_extract_data_and_train_model_Classifiers(mocker, freqai_conf, model):

View File

@ -1770,6 +1770,7 @@ def test_api_freqaimodels(botclient, tmp_path, mocker):
{'name': 'LightGBMRegressorMultiTarget'}, {'name': 'LightGBMRegressorMultiTarget'},
{'name': 'ReinforcementLearner'}, {'name': 'ReinforcementLearner'},
{'name': 'ReinforcementLearner_multiproc'}, {'name': 'ReinforcementLearner_multiproc'},
{'name': 'SKlearnRandomForestClassifier'},
{'name': 'XGBoostClassifier'}, {'name': 'XGBoostClassifier'},
{'name': 'XGBoostRFClassifier'}, {'name': 'XGBoostRFClassifier'},
{'name': 'XGBoostRFRegressor'}, {'name': 'XGBoostRFRegressor'},
@ -1788,6 +1789,7 @@ def test_api_freqaimodels(botclient, tmp_path, mocker):
'LightGBMRegressorMultiTarget', 'LightGBMRegressorMultiTarget',
'ReinforcementLearner', 'ReinforcementLearner',
'ReinforcementLearner_multiproc', 'ReinforcementLearner_multiproc',
'SKlearnRandomForestClassifier',
'XGBoostClassifier', 'XGBoostClassifier',
'XGBoostRFClassifier', 'XGBoostRFClassifier',
'XGBoostRFRegressor', 'XGBoostRFRegressor',