mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 10:21:59 +00:00
refactor(BasePyTorchClassifier.py): convert tensor to list before creating DataFrame to avoid TypeError.
docs(BasePyTorchClassifier.py): add missing parameter description in predict method
This commit is contained in:
parent
e3ff2ccc97
commit
306dfc4ae8
|
@ -45,6 +45,7 @@ class BasePyTorchClassifier(BasePyTorchModel):
|
|||
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
|
||||
"""
|
||||
Filter the prediction features data and predict with it.
|
||||
:param dk: dk: The datakitchen object
|
||||
:param unfiltered_df: Full dataframe for the current backtest period.
|
||||
:return:
|
||||
:pred_df: dataframe containing the predictions
|
||||
|
@ -78,7 +79,9 @@ class BasePyTorchClassifier(BasePyTorchModel):
|
|||
probs = F.softmax(logits, dim=-1)
|
||||
predicted_classes = torch.argmax(probs, dim=-1)
|
||||
predicted_classes_str = self.decode_class_names(predicted_classes)
|
||||
pred_df_prob = DataFrame(probs.detach().numpy(), columns=class_names)
|
||||
# used .tolist to convert probs into an iterable, in this way Tensors
|
||||
# are automatically moved to the CPU first if necessary.
|
||||
pred_df_prob = DataFrame(probs.detach().tolist(), columns=class_names)
|
||||
pred_df = DataFrame(predicted_classes_str, columns=[dk.label_list[0]])
|
||||
pred_df = pd.concat([pred_df, pred_df_prob], axis=1)
|
||||
return (pred_df, dk.do_predict)
|
||||
|
|
Loading…
Reference in New Issue
Block a user